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Type inference is essential for programming languages, yet complete and global inference quickly becomes
undecidable in the presence of rich type systems like System F. Pierce and Turner proposed local type inference
(LTI) as a scalable, partially annotated alternative by relying on information local to applications. While LTI
has been widely adopted in practice, there are significant gaps between theory and practice, with its theory
being underdeveloped and specifications for LTI being complex and restrictive.

We propose Local Contextual Type Inference, a principled redesign of LTI grounded in contextual typing—a
recent formalism which captures type information flow. We present Contextual System F (F), a variant of
System F with implicit and first-class polymorphism. We formalize F. using a declarative type system, prove
soundness, completeness, and decidability, and introduce matching subtyping as a bridge between declarative
and algorithmic inference. This work offers the first mechanized treatment of LTI, while at the same time
removing important practical restrictions and also demonstrating the power of contextual typing in designing
robust, extensible and simple to implement type inference algorithms.
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1 Introduction

Type inference plays a crucial role in programming languages, offering mechanisms that range
from completing partial type information to inferring all types within a program. Type inference
can be either global or local. Complete type inference, where all types can be inferred without
explicit annotations, employs global algorithms with long-distance constraints, typically based on
unification [Herbrand 1930; Robinson 1965]. The Hindley-Milner (HM) type system [Milner
1978] provides a canonical example of complete type inference. HM algorithms have a certain
degree of complexity due to these advanced constraint solving techniques. Nevertheless, complete
type inference leads to a simple specification that shields us from those algorithmic details and
clearly determines which programs are accepted by the type system. For instance, the core inference
rule for function application in the declarative specification of HM is notably concise and standard:
'reg:A—>B Thre:A

I'teey:B
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Combined with other rules, this rule enables polymorphic functions to be applied with implicit
instantiation of type arguments. For example, given an identity function id of type Ya. @ — «, the
application id 1 is easily inferred to have type Int under HM rules. In an explicitly polymorphic
calculus, such as System F [Girard 1972; Reynolds 1974], the same application would require
programmers to explicitly pick the instantiation and write id @Int 1.

Nevertheless the expressive power of HM is limited, as it supports only rank-1 polymorphism
where all universal quantifiers appear at the top level. A consequence of this restriction is that the
instantiated types cannot themselves be polymorphic. Therefore, a natural extension of the HM type
system is a variant of implicit System F [Mitchell 1988], which supports first-class polymorphism.
A well-known and standard way to formalize instantiation in first-class polymorphism is with
subtyping using the following instantiation rule [Mitchell 1988; Odersky and Laufer 1996]:

I'+C T+[C/a]JA<:B
I'FVYa.A<:B

This rule relates polymorphic types with their instantiations. In the id 1 example, the polymorphic
type Va. a — «a of id is a subtype of Int — Int by instantiating « with Int. Therefore, id can be used
as a function of type Int — Int. In contrast to HM, this rule even allows impredicative instantiation,
where C itself is a polymorphic type. For instance, the explicit type application id @(Vp. § — p) id
is encodable in implicit System F as id id by picking C to be V. f — f in the rule above.

Unfortunately, complete type inference can easily become undecidable when extended to richer
type systems, including implicit System F. In fact, even for the subtyping relation itself, the instan-
tiation rule without restrictions results in an undecidable problem [Chrzaszcz 1998; Tiuryn and
Urzyczyn 1996]. Therefore, in order to preserve decidability, we must impose some restrictions and
turn to partial type inference schemes where some degree of user annotations is required.

Local type inference (LTI) [Pierce and Turner 2000] is a partial type inference approach,
which disallows long-distance constraints and relies only on information local to adjacent nodes
in the abstract syntax tree. LTI trades some of the expressive power afforded by techniques such
as unification for scalability to advanced type system features. Pierce and Turner showed that
advanced features such as subtyping and impredicativity are both supported with LTI The key
algorithmic idea in LTI is the use of matching [Huet 1976], instead of unification. Unlike unification,
which poses fundamental problems related to decidability in the presence of advanced type system
features, matching remains decidable even in the presence of advanced type features such as forms
of subtyping, intersection types and first-class polymorphism [Diidder et al. 2013; Stirling 2009].

While programs using LTI often require more annotations compared to programs that adopt
global type inference techniques, in practice the burden of annotations is still relatively low.
Therefore, due to its moderate annotation burden and good scalability, LTI techniques are widely
adopted in practice and are the main type inference technique adopted by many mainstream
programming languages, including Java, C#, TypeScript, Flow and Scala.

Despite the pervasive use of LTI in modern programming languages, its theoretical foundations
remain surprisingly underdeveloped, creating a significant disparity between theory and practice.
While there have been some follow-up works [Jenkins and Stump 2018; Odersky et al. 2001] to
Pierce and Turner’s original work, these pale in comparison with research on global type inference,
which has seen many developments over the years [Botlan and Rémy 2003; Dolan and Mycroft
2017; Dunfield and Krishnaswami 2013; Jones et al. 2007; Parreaux et al. 2024; Serrano et al. 2020].
The lack of development of LTI is partly due to the underlying theory of LTI being complex and
perhaps even the perception that the approach is somewhat ad-hoc. Existing specifications for LTI
require significant complexity compared to specifications for HM and implicit System F, which
nicely capture the key aspects of implicit instantiation via the application rule and the subtyping
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instantiation rule. Specifications for LTI often rely on monolithic application rules with complex
side-conditions to specify instantiation, and they often have important restrictions compared to
practical implementations. Such complexity transposes into the algorithms as well and interferes
with the addition of new features. Many new features require non-trivial changes, which may
explain the lack of progress in the theoretical development of LTI. Existing specifications of LTI
also make it hard to compare and make a precise connection to implicit System F and other type

inference algorithms for System F [Botlan and Rémy 2003; Jones et al. 2007; Leijen 2008].

This work employs contextual typing [Xue and Oliveira 2024], a recent generalization of bidirec-
tional typing [Dunfield and Krishnaswami 2022; Pierce and Turner 2000], for naturally specifying
and designing local type inference and their algorithms. Contextual typing extends bidirectional
typing by propagating not only known type information, but also other contextual details about
the surrounding context of terms [Xue and Oliveira 2024]. Contextual typing is especially suitable
to specify partial type inference algorithms, since it employs contextual type assignment systems
(CTASs) to model the contextual type information available for a term to type-check. A CTAS
provides a type system specification that precisely indicates where annotations are required. Con-
textual typing also supports a powerful form of contextual subsumption, that exploits partially
known contextual information [Xue and Oliveira 2024]. This enhanced expressiveness allows
many other type rules within the system to remain modular, simple and largely untouched, as the
complexity is managed more effectively by the contextual subsumption mechanism itself.

By leveraging contextual typing, we aim to provide a foundational approach that simplifies the
specification of LTI, removes some important restrictions and facilitates the development of robust
and intuitive type-inference algorithms. We concretely illustrate our approach with a variant of
implicit System F, called Contextual System F (F.). Furthermore, we believe that our work provides
a solid foundation for future research addressing the gaps in terms of type system features between
LTI theory and practice. In summary our contributions are:

e Local Contextual Type Inference, offering a simple and modular specification of LTI (Sec. 3),
aligned with design choices found in mainstream programming language implementations.

o We define matching subtyping to specify the use of matching for constraint solving and aid in
establishing the equivalence between the CTAS specification and the algorithm (Sec. 4).

o We present Contextual System F (F.), a variant of implicit System F, demonstrating the sound-
ness, completeness, and the decidability between its CTAS and the algorithmic rules. The algo-
rithmic system and metatheory are presented in Sec. 5.

o All results, including the properties of Contextual System F and matching subtyping, have been
formally proven and mechanized in theorem provers', ensuring their correctness and
reliability. As far as we know we are the first to mechanize local type inference algorithms.

e We have a prototype implementation available at https://github.com/juniorxxue/LCTI and an
accompanying artifact [Xue et al. 2025], which can run all the examples presented in this paper.

2 Local Type Inference and Contextual Typing

This section introduces the key ideas in local type inference and characterizes programs accepted
by local (contextual) type inference, informally. Some of the examples that we use are adapted
from Botlan and Rémy [2003]. We also introduce relevant background on contextual typing.

2.1 Characterizing Local Type Inference

We start by informally characterizing programs accepted/rejected by LTI by example. All the
examples shown in this subsection are typeable/untypeable both in F, and Pierce and Turner’s

IMost of the formalization is done in Agda, but decidability is done in Rocq due to better support for arithmetic reasoning.
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original formulation of LTI with one caveat: some of the programs would need to be written in an
uncurried style in Pierce and Turner’s approach. We will ignore this caveat here and present all
programs in a curried style (directly accepted by F.). Sec. 2.2 discusses this caveat in detail.

Local type inference. Local type inference [Pierce and Turner 2000] is a partial type inference
technique consisting of two ideas: local synthesis of type arguments and bidirectional type-checking.
Synthesis of type arguments allows programmers to write polymorphic function applications
without explicitly providing type arguments. For example LTI can type-check id 1, just like the
example we have seen in Sec. 1 for HM and implicit System F. Bidirectional type-checking is a
technique that allows the type information to be propagated, and permits the programmer to
omit certain annotations. For example, if f has the type (Int — Int) — Int, then f (Ax. x) is a
well-typed term and (Ax. x) is checked against the type Int — Int, propagated from the input type
of f. This idea of type information flowing from functions to arguments has evolved into the default
application rule of bidirectional typing, which has been adopted in many type systems:

I'trege=>A—B Tre, = A

A
I'teieys = B PP

In bidirectional type systems there are two typing modes: I' + e = A is the inference mode, and it
means that the type A is inferred from analyzing e; ' e < A is the checking mode, and it means
that given type A we can check whether e has type A. The flow of type information from functions
to arguments is clear in the bidirectional rule above.

Top-level annotations are usually required. Unlike HM and other global type inference techniques,
in LTI top-level annotations are usually required. For instance, the HM term let succ = (Ax. x +
1) in succ 1is not directly typeable in LTI, since there is no inference rule for lambda terms. LTI
only supports checking a lambda term against a type. Therefore, either annotations are required to
type-check a lambda, or the type information must come from the surrounding context (as in the
f (Ax. x) example above). With LTI we can write instead:

let succ : Int — Int = (Ax. x + 1) in succ 1

Alternatively, we could annotate the variable in the lambda (Ax : Int. x + 1). Moreover, unlike HM,
there is no let generalization. Thus, top-level polymorphic functions must be annotated.

Implicit impredicative instantiations. One of the motivations for LTI is to support implicit im-
predicative polymorphism, which allows instantiations with polymorphic types without explicit
type arguments. For example, LTI will instantiate the type variable « of choose to be Va. o — a:

choose : Va. a — a — a,id : Va. a — a + choose id = (Va. a — a) —» (Va. a — «)

Explicit impredicative instantiations. Like System F, LTI also supports explicit impredicative
instantiation by providing an explicit type argument. For example, consider the application:

auto : (Va. a — a) — (Ya. a — «a) + choose id auto
LTI only supports a restricted form of subtyping and rejects this example as it considers the types
of the two arguments (Va. @ — a and (Ya. « = @) — Va. a — «a) to be unrelated. In such cases,
we can explicitly instantiate id with a type application using id @(Ya. @ — a) to adjust the type
of id, thereby allowing the annotated expression to be accepted:

+ choose (id @(Va. a — «)) auto = (Va. a — @) —» (Ya. a — «a)
Application-triggered implicit instantiation. In LTI, implicit instantiation is triggered by applica-
tions to arguments only. This contrasts with global type inference algorithms, where instantiation
can be triggered without explicit applications. For example, f : (Int — Int) — Int + f id is not
directly accepted with LTI, since id is not applied to any argument. This design has important
consequences. In some cases, more annotations or -expansions are needed to type programs with
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LTL For instance, with f id we can -expand id, and LTI will accept the application f (Ax. id x). In
other cases, however, it is possible to avoid ambiguities that other approaches must address. For
example, single id does not have a most general type if both single and id can be instantiated. This
expression can be typed as either [Va. @ — a] or Va. [@ — «]. Due to this ambiguity, some type
inference algorithms [Serrano et al. 2020] will reject this program. On the other hand, LTI will
unambiguously infer the former result as implicit instantiation occurs only in applied terms:

single : Va. (& — [a]) F single id = [Va. a — a]

Shallow instantiations. In LTI, all instantiations are shallow. This means that the instantiation
happens only at the quantifiers in rank-1 positions in types. Note that nested rank-1 positions are
also included, so the following is allowed:

h:Bool > Va.a > at+ htrue1 = Int

with a being implicitly instantiated to Int. Quantifiers appearing in higher-rank positions are
not instantiated. For example, annotating f (of type (Int — Int) — Int) with the type (Va. @ —
a) — Int will not type-check in LTI and F., since the subtyping statement (Int — Int) — Int <
(Ya. @ — a) — Int will not trigger instantiation of the rank-2 quantifier, and subtyping will
consider these two types unrelated and will fail. In several other type inference algorithms, which
adopt deep instantiation [Dunfield and Krishnaswami 2013; Odersky and Laufer 1996], the type
(Ya. « = a) — Int is accepted and « in the input position is instantiated to Int.

2.2 Local Type Inference Specification and its Limitations

Local type inference has an interesting approach to instantiation. However, the specification
proposed by Pierce and Turner is complex, and has important restrictions compared to practical
implementations. A first complication is the departure from standard System F syntax regarding
terms and types. Functions are, by default, uncurried: type arguments (if present) and function
arguments are all provided at once, and polymorphic types are merged with function types having
the syntactic form Va. A — B. We list other complications and practical limitations below.

Specifying applications and instantiation. Instantiation is monolithically modeled as part of the
application rules. There are four application rules in total. Two of them are checking rules, and two
others are inference rules. We show the inference rules for explicit and implicit instantiation next:

I+f=Va.B—>C Tre=D

Trf=Va.B—C @l >0 T+D<:[A/a]B
F're< [A/7]B VE.(T r D <: [F/@]B implies T r [A/@]C <: [F/a]C)
= — S-App — S-App-InfSpec
T+ f[A]l(e) = [A/a]C T+ f(e) = [A/z]C

The checking rules are similar and largely duplicate the logic of the inference rules. The rule for
explicit instantiation (rule S-App) can be viewed as a generalization of the standard bidirectional
typing rule presented earlier, except that it deals with uncurried applications and their explicit
instantiations. The number of type variables « can be zero, and in that case it falls back to the non-
polymorphic bidirectional function application. Rule S-App-InfSpec is used for function applications
with implicit instantiation, where type arguments are not required. Unlike the first rule, it requires
that arguments are always inferable (T + € = D). This rule first infers the types for both the
function and its arguments, and then uses subtyping to compare the inferred type of the arguments
with the input type of the function, but substituted with the guessed type arguments. There are
a few important conditions in this rule. Firstly, the rule ensures that it is used in a polymorphic
context (|a| > 0). The last condition enforces that the guessed type is the most precise type. Finally
the condition T + D <: [A/a]B specifies how to find solutions for instantiation using subtyping.
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Notably, the type B has free type variables that must be replaced with guessed instantiations (A),
but no instantiations are needed for the subtype D. This suggests that matching is sufficient to
implement the solving process. We will come back to the topic of matching later in Sec. 4.

Uncurried applications and locality. In Pierce and Turner’s formulation of LTI uncurried applica-
tions play an important role, since they define the notion of locality in the approach. The distinction
between local and global type inference is that in local type inference only information from
adjacent nodes in the abstract syntax is used to solve instantiations. In Pierce and Turner’s LTI this
means that all instantiations must be found from looking only at the arguments of an uncurried
function. Consider a constant function applied to two arguments:

const : Yo f. ¢ — f — a + const true 1 = Bool

Here we have two type arguments instantiated with Bool and Int for the application const true 1.
In an uncurried formulation of this application, which fits with Pierce and Turner’s approach, rule
S-App-InfSpec can be applied (const(true, 1)). This rule would guess the instantiations and infer
the type Bool. Their rule ensures that, after applying the arguments, all instantiations for type
variables (@ and f in this case) in the uncurried application are guessed.

Second-class treatment for curried functions. Curried functions can still be encoded, since the
syntax does allow for nested uncurried abstractions. Here we use the syntax A @ x : A. e to denote an
uncurried function with type arguments @ and arguments x : A. In Pierce and Turner’s LTI we can
write a curried variant of the const function using, for example: const, = Ada (x : ). Af (y : p). x.
Now, we can partially apply const, with for example const;(1) to obtain the type Vf. f — Int. This
is possible because we only need to solve a (which is determined by the first argument) for the
first uncurried function. However, as Pierce and Turner acknowledge, the treatment for curried
functions is second class since, for a third variant of const: consts = Aa f (x : a). A(y : f). x, the
applications consts(1) and consts(1)(true) would both fail. The difference to const; is that now
B is part of the first uncurried function, but it can only be determined by the second argument
(y). It is not surprising that the partial application consts(1) fails. However, more surprisingly, the
application of the two arguments (consts(1)(true)) fails as well. The reason for this is that rule
S-App-InfSpec requires that all type arguments are solved by looking only at the arguments of the
same uncurried function, but true is an argument of another uncurried function.

Hard-to-synthesize arguments. A key limitation in Pierce and Turner’s LTI approach is the so-
called hard-to-synthesize arguments problem [Hosoya and Pierce 1999]. In rule S-App-InfSpec
all arguments need to be inferable. However, this is problematic for applications of higher-order
functions where the arguments are lambdas. For example, we would like to have:

twice : Ya. ¢ — (¢ > @) — a F twice 1 (Ax. x) = Int

But, if this application is uncurried (twice (1, Ax. x)) and uses rule S-App-InfSpec then we would
try to infer the type of Ax. x. Unfortunately, inference for lambdas is not supported in LTI and
consequently this expression fails to type-check. Interestingly enough, if twice is curried (with
the lambda argument being part of a different uncurried function as described in the previous
paragraph), then we could type-check twice since the argument 1 would be sufficient to instantiate
a and then rule S-App could be used to check the lambda. This example actually illustrates that
writing uncurried functions does not always maximize the chances of inference: sometimes a
curried function type-checks when an uncurried function does not.

Gap to practical implementations of LTI. The restrictions that we discussed would be too severe in
practice. In particular the hard-to-synthesize arguments problem, forbidding the use of unannotated
lambda arguments, would prevent many uses of higher-order functions found in programs written
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in languages like Java, Scala or TypeScript. Unsurprisingly, those languages do not adopt the same
approach as Pierce and Turner. Instead, these languages address many of the problems above by
using the information of instantiated arguments as soon as possible. Type inference proceeds from
left-to-right and, as soon as instantiations are found, they are used to instantiate the remaining
portion of the type. For example, the twice example above is accepted in all those programming
languages, since once inference processes the argument 1 the instantiation for « is discovered and
then we can check the lambda with the type Int — Int. Note that this left-to-right approach will
reject twice (Ax. x) 1 for a flipped version of twice : Va. (¢ = a) — a — a. Languages like Scala
and F, still reject such examples, which require a right-to-left inference approach. Thus, left-to-right
inference can be seen as a pragmatic compromise to enable type checking many practical examples.
Finally, note also that we need more flexibility than rule S-App-InfSpec as we need to flexibly
choose between inference and checking per argument. The solution that we adopt in F. allows for
this flexibility and closely models what practical implementations of LTI do in practice.

In summary LTT has a complex specification, which makes it difficult to understand and introduces
restrictions that are too severe in practice. Follow-up works on LTI have either reused the original
specification of uncurried application rules [Odersky et al. 2001] and suffer from similar problems, or
moved away from subtyping and developed a new specification with a complex logic for application
dispatching [Jenkins and Stump 2018]. Practical implementations of LTI have significantly different
designs that address some of the problems, but no clear specifications exist for these designs.

2.3 Background: Contextual Typing

Since our goal is to reformulate LTI using contextual typing, we first provide some background.
The original work on contextual typing [Xue and Oliveira 2024] introduced Quantitative Type
Assignment Systems (QTASs) as a declarative specification for contextual typing. A QTAS decorates
a typing judgment with a counter that quantifies available type information. The concept of counter
provides an accurate analogy in simple type systems such as the STLC. However, in more complex
type systems, such as System F or systems with subtyping, counters do more than just quantifying
existing type information. Thus, we change the terminology in this paper and use the term mask
instead of counter to convey a more fine-grained notion that, not only quantifies available type
information, but more generally pinpoints what parts of a type that are known or unknown from the
context. The alternative perspective provided by masks is closely related to the notion of colors in
colored type inference [Odersky et al. 2001]. Thus, we also employ colors to complement and aid in
our presentation of the declarative type system. To be consistent with the change from counters to
masks, we also change the terminology from QTAS to Contextual Type Assignment System (CTAS).
Even though the terminology and syntax of masks changes with respect to the original work, it is
still isomorphic to the original notion of counters, and there is no fundamental conceptual change
on the original idea. The change is merely on presentation and terminology.

Contextual Type Assignment Systems (CTASs). Bidirectional typing takes an all-or-nothing ap-
proach, forbidding the propagation of partial type information. Contextual typing [Xue and Oliveira
2024] addresses this issue, and generalizes bidirectional typing. A contextual type system can be
specified with a CTAS, which is a variant of a type assignment system, but decorated with masks,
which indicate the availability of contextual information to type-check a term. Masks are con-
structed from atomic masks. An atomic mask can be either an opaque box B or a transparent box
O. An opaque box denotes that the type information is not available, whereas a transparent box
denotes available type information. Masks can be just atomic masks or application masks: a m,
where a indicates the partial information known from arguments. ® m means that one argument’s
type information is unavailable in the context, and O m means that one argument’s type is available.
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(Under environment I, expression e has type A with m contextual information.)

x:AeTl Ttrge: A ILx:Atp_e: B
———  DLit ——— DVar ———  DAnn DLam
| S Iigx: I'ta(e:A): F'tpAx.e: A—> B
F'tgme:A—>B Thie: A IF'rtge: I'+,A=B
DApp DSub
T'rtpee:B I'tpe:B

Fig. 1. Declarative typing rules for STLC.

In general masks where all information is available (such as O or OO) or no information is available
(such as ® or mm) can be modeled, respectively, in a traditional bidirectional type system with the
inference and checking modes. In contrast, mixed masks, such as OB or mO, where only some type
information is available, have no direct correspondence to bidirectional typing. We present the
CTAS for STLC in Fig. 1 to illustrate the key ideas. The syntax of contextual STLC is:

Types A,BC,D:=Int|A— B

Typing Environments Fu=-|I,x:A

Expressions ex=i|x|Ax.e|leiey]|e: A
Atomic Masks az=0|m

Masks mu=alam

To help understand the typing rules, we colorize the types based on their masks.
correspond to m masks and blue types to O masks. In other words, are unavailable in the
context and are inferred by the term itself, while blue types are known from the context. We wish
to remark that colors play no role in the theory but are used only for readability. Rules DLit, DVar,
and DAnn apply to terms whose types can be inferred directly from their syntax, and the mask is m
since no contextual information is required. Rule DLam states that a lambda term has type A — B
if its mask can be decreased (0— = O and (O m)— = m), which means that A is known from the
context. Rule DSub clears the context if the term e is inferable and the mask m matches type A.
Besides changing the notion of counters to masks, there is one minor adaptation from the original
type system [Xue and Oliveira 2024] to align with the presentation in Sec. 3. We use the notation
I' Fm A = B in the DSub rule. For STLC, subsumption is trivial, and it just amounts to syntactic
equality and checking whether the shape of types matches masks.

The application rule is the most interesting. First we know that the argument e, is typeable with
some mask a, The function part e, is then aware of the increased information by appending the
flipped mask a to m (O = m and m = O). The standard bidirectional rule for applications, using the
inferred type of the function to check the arguments, will become a specialized instance of DApp
when a is O and m is W. In contrast, when a is B the type of the argument must be inferred, and this
information can be used in e; as available contextual information. This enables the inference of
lambdas as applicands and the encoding of let-binders. For example, (Ax. Ay. x +y) 12 is accepted:

— DLt — DLam
| S I Foom (A Ay. x+y) : Int = Int —

- DLt DApp
Ite2: I'tom (Ax. Ay. x+y) 1:Int —
DApp

g (A Ay. x+y)12:

A naive implementation of DApp would rely on backtracking, since a choice between infer-
ence and checking would be needed for each argument. Instead, contextual typing provides a
non-backtracking syntax-directed algorithm that can be efficiently implemented. We omit the
presentation of the algorithm here, and discuss it instead in Sec. 5.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.



Local Contextual Type Inference 11:9

(Under T, expression e has type A with m contextual information.)

x:AeTl Ttge: A ILx:Ar+p_e: B
—— DT-Lit ——— DT-Var ——— — DT-Ann DT-Lam
Tirai: I'tex: Ita(e:A): F'tpAx.e: A—> B
rl-(am)el:A—>B I'toet A Itge: 'pn ALB
DT-App DT-Sub
T'kneie:B I'the:B
Fatge: A TF'tme: Tty [AJa] BESC
DT-TLam DT-TApp
'ty Aa.e:Va. A T'the@A:C

Fig. 2. Declarative typing rules.

3 Contextual System F

This section presents a CTAS specification for F, which provides a variant of System F with local
(contextual) type inference. Notably implicit polymorphism is added in a completely modular way,
without touching the application rule in Fig. 1. Instantiation is handled by contextual subsumption.
The main change is in subtyping, which includes a suitably restricted instantiation rule.

3.1 Syntax and Typing

Syntax. Compared to the STLC CTAS in Sec. 2.3, we extend types and terms with standard
System F constructs: type variables «, universal types VYa. A, type abstractions Aa. e, and type
applications e @A. The design of masks stays the same in F..

Types ABCD:=Int|A—>B| a« | Ya. A
Expressions ex=i|x|Ax.e|lejes]|e:A| Aa.e | e @A
Environments Fi=-|TIx:A| ILa

Typing. Fig. 2 shows the typing rules. Most rules are the same as those presented in Sec. 2.3. In
DT-Sub, we have a subtyping I' -, A < Binstead of T +-, A = B. The subsumption rule is the entry
point to implicit instantiation, where universal types can be instantiated into function types. The
two extra rules in gray deal with two new constructs for System F. DT-TLam rule type-checks a
type abstraction Aa. e against a universal type Va. A. With a contextual information available, it
then type-checks its body e in the extended environment with type variable a. For type applications
e @A, DT-TApp first infers the type of e, which is expected to be a universal type Var. B. Then,
it checks that the instantiated type [A/a] B is a subtype of type C by leveraging m contextual
information. The type C is the expected type of the whole type application expression.

Example. We show the example of inferring a type for id id 1 below, only for the typing portion
of the derivation. In this example I' is id : Va. @ — «a.

T = DT-Sub - DT-Var
F d: (Va.a — a) — Int > Fm1d:
== — = DT-App —————— DT-Lit
rhj.ldld:lnt—> 1"!—.1:
DT-App
T rgidid1:

Two key points arise in this derivation. First, DT-App uses the argument types to guide the inference
of the type of the function [Xie and Oliveira 2018]. We infer the types of two arguments id and
1, and then propagate the type information to the context of the function id. This use of DT-App
is the opposite of the conventional rule for bidirectional typing where we infer the type of the
function and then use the input type to check the arguments instead. Second, the subsumption
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(Under T, type A is a subtype of B and m contextual information is known for B.)

ITarg A<B
——— DS-Refl —  DS-Int —— DS-Var DS-V
Tt A< 'y Int < Int T'tga<a T'tgVa.A<Va. B
F+tgC<A Trpm-B<D I'eB Al I'Fam) [B/la]A<C— D
DS-Arr DS-vL
', Ao B<C—->D F'tam Ya. ASC—D
Ag =a ¢ FV(4) (1) (A— B)?‘Ij m) =€ FV(A) (4)
A2 = true (2) (A— B)(“a my =& FV(A) A B, (5)
ag = true (3) (Y- Ay = Aly ) (6)

Fig. 3. Declarative subtyping rules and instantiability.

rule relates the type of id (Va. @ — @) to its instantiated type ((Va. « — a) — Int — Int). The
subtyping derivation and instantiation details are discussed in the next.

3.2 Contextual Subtyping

The contextual subtyping rules are shown in Fig. 3. The mask indicates how much contextual
information is available for the supertype. The mask O means we have full information about the
supertype, leading to traditional subtyping. Rules DS-Int, DS-Var and DS-V all use the O mask.
Because we are modeling System F, all subtyping checks with a O mask imply syntactic equivalence
checks. The O m mask means that the first input type of the supertype is known to be available in
the context, and it can be used for instantiating polymorphic functions and performing subtyping
checks. For function types (rule DS-Arr), we decrease the mask ((a m)- = m and O~ = O), and do
contravariant checks of input types and covariant checks of output types.

Instantiation rule. The DS-VL rule is key to the implicit instantiation of polymorphic types. A
polymorphic type is a subtype of a function type if its type argument « appears in known parts of
contextual information, characterized as instantiability. We guess the type B, and then check that
the substituted result [B/a]A is a subtype of function type C — D. Keen readers may notice that
the mask is a m in rule DS-VL. This means that we have arguments in the context, and instantiation
can only happen in function application. Moreover, the mask a m explains why the supertype is
a function type: since we are in the context of an application, we expect the supertype to be a
function type. Therefore, the formulation of rule DS-VL nicely expresses the observation about
local type inference that implicit instantiations can only be triggered by applications.

Instantiability. The instantiability restriction A%, that appears in rule DS-VL determines when
solutions for « can be found. It can be read as “« is instantiable in type A with m contextual
information”. We present its rules in Fig. 3. Our instantiability judgment uses the mask as a
condition to indicate the known parts of types. Essentially instantiability covers three cases:

o Type variable o does not appear in type A. In this case, there is no need to find a solution for the
instantiation; for example, consider Va. Int — Int. This case can be handled by (1) and (2).

e Type variable « appears in known output types. For example, in f : YVa. Int > a —» a + (f 1) :
Int — Int, the mask for f is OO, indicating that @ — « is in the known part of the type. By
further checking the occurrence of a in « — «a we can guess the solution for ¢, handled by (2).
Rule (3) deals with the case where a variable « covers multiple known positions. For example,
inf:Va. ar (f1): Int, we know both the input and output types of f, from arguments and
annotations, we can instantiate & with Int — Int to accept this example. We allow this by defining

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.



Local Contextual Type Inference 11:11

C Yaf. @ > (@ > a)—> B oWy Y |
e il — (RO ) St - (R - Bl |
el T mx ) 2T B 3(): it
O | | O O O

Fig. 4. Visualization of instantiability, subtyping and arguments.

the relation of isomorphic O, represented as O (0 := O | O O). Once the mask is isomorphic to O
and corresponds to a variable a, we are able to guess the a.
o Type variable o appears in the position of known type arguments. The simplest case is id 1, and
for this case the mask is Om, indicating the input type « is known, handled by (4).
(5) and (6) simply cover the inductive cases and delegate instantiability to the subparts of the
type. From (5) we can see our instantiability enforces a left-to-right order and exploits the known
information from the input to the output types. This helps it to align with the algorithm in Sec. 5.

Correspondence between masks, types, and arguments. Fig. 4 illustrates the correspondence be-
tween masks, subtypes, supertypes, and arguments in subtyping and instantiability, using the
slightly artificial example (f 1 (Ax. x) 2 3) : Int. The first row shows the type bound to variable f,
which is Va . « — (¢ — a) —  — Vy. y. The second row shows f’s instantiated types when it
is applied to its arguments and annotated. Another way to read the first two rows (surrounded in
dashed boxes) is that they represent the subtype and supertypes of a subtyping statement, with the
mask OmOO0 shown in the fourth row. The third row shows the application expression, with f’s
arguments and outer annotation Int. We highlight their correspondence with vertical gray blobs.
In the type of f, @ and f are instantiable based on the two O masks, which are provided by the
inferable arguments 1 and 2. The argument Ax. x can be checked against « — « with full contextual
information, thanks to the instantiability of «. Finally, the instantiability of y is determined by the
mask 00, according to rule (3), using combined information from the inferable argument 3 and the
annotation Int. This example demonstrates how F, can handle problematic examples for Pierce and
Turner’s LTI approach, such as those shown in Sec. 2.2.

Properties. Subtyping is reflexive for the ®m mask as shown by rule DS-Refl, and we show that
reflexivity also holds for the O mask. Furthermore, subtyping is transitive for arbitrary masks.

THEOREM 3.1 (REFLEXIVITY OF SUBTYPING). I g A < A.

THEOREM 3.2 (TRANSITIVITY OF SUBTYPING). IfT v, A< BandTl v, B<C, thenl +,, A<C.

Examples. We complete our example discussed in Sec. 3.1 with the subtyping derivation. In this
example, we first apply the DS-VL rule because the subtype is polymorphic and the supertype is a
function type. We know that « is instantiable since it appears in the input type indicated by the O
mask. Then, we guess the solution for «, perform the substitution, and obtain a function type as
the subtype. DS-Arr then eliminates the mask and checks the input and output types. Subsequently,
we encounter a similar situation and need to apply the DS-VL rule again. We guess « to have type

Int and perform the remaining subtyping checks.
DS-Refl

DS-Arr
DS-VL
DS-Arr
DS-VL

I'tgInt <

T tom [Int/a]a — a < Int —

I'tpm Va.a - a < Int —

[ toom [Va. o - afala - a < (Voo — a) — Int —

I'toom YVa. a —» a < (Va.aa — a) — Int —
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(Under environment I', expression e has type A and elaborates to e’.)
x:AeTl ILx:Are:B~wse
— IF-Lit — IF-Var - IF-Lam
Fri:lntwi F'Fx:A~wx F'rAx.e:A—> B~ Ax.e
T'kep:Aw e '+A>B—>C Tre:Bwe Tare: A~ e
IF-App v

IF
T'hejey:Cw el (e5:B) Thte:Va. A~ Aa. (¢ 1 A)

Fig. 5. Elaboration rules for implicit system F.

3.3 Relation to Implicit System F

We relate F. with variants of implicit System F in the literature. Implicit System F [Chrzaszcz
1998; Mitchell 1988] is a variant of System F that does not require any annotations or explicit type
applications. It supports impredicative polymorphism and can type-check all the examples we
present in the previous sections. For soundness we relate F, to a variant of System F [Chrzaszcz
1998] that adopts the unrestricted VL rule for polymorphic subtyping presented in Sec. 1.

Soundness. We show that F. is sound with respect to implicit System F after type erasure. This
result essentially shows that our restricted instantiation rule models a subset of the programs
allowed by the unrestricted rule VL.

THEOREM 3.3 (SOUNDNESS TO IMPLICIT SYSTEM F). IfT +,, e : A, thenT + erase(e) : A.

Completeness and annotatability. Implicit System F with polymorphic subtyping can handle deep
instantiation; however, our implicit instantiation is shallow (restricting instantiation to rank-1
quantifiers) and is triggered solely by applications. To establish a completeness result, we create a
tailored implicit System F for our setting: we remove polymorphic subtyping and the subsumption
rule, and embed the logic of instantiation into the application rules.

We present the elaboration rules of the tailored implicit system F (F;) in Fig. 5. The elaboration
from F; to F, is straightforward by inserting annotations into appropriate places. IF-Lit and IF-Var
are standard type assignment rules and elaborate to identical terms. IF-Lam is typed with a function
type and elaborates to Ax. ¢’, where e’ comes from the elaborated result of its body. IF-App is
particularly interesting: we do not expect the e; to have a function type, instead, we have an
instantiation judgment to transform a type into a function type:

T'tB T+ [B/a]JA»C—D

Inst-Base Inst-VY
I'tA—>BrA—B I'rVYa.A-C — D

Inst-Base is the base case that takes a function type and returns the same result; and Inst-V indicates
that if we have a polymorphic type Ya. A and can guess the type B, then we can substitute « in
A with B and obtain C — D as the instantiation result of the polymorphic type. Instantiation
is simple but powerful. For example, it can instantiate the type Va. @ — a to Int — Int. More
importantly, it allows empty types to be instantiated with any type, such as instantiating Va. a to
Int — Int. Having the instantiation in the application reflects the characteristics of F., where only
applications can trigger implicit instantiations. Note that we always annotate the argument in the
elaboration of applications. To avoid the burden of excessive annotations, it is possible to adopt a
syntactic check in the transformation stage, to drop annotations on obviously inferable arguments,
characterized as generic consumers in Sec. 5. IF-V is the introduction rule for polymorphic types,
and it allows an expression to be typed with a type Va. A, provided that it can be typed with A
under the extended environment. We note that we insert the annotation on the elaborated term e’,
in case we get unintended elaborated results such as (Aa. Ax. x) 1, which is untypeable in F..
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We present the completeness (annotatability) theorem below. In principle, to type-check a F;
term in F,, it is sufficient to place annotations only on arguments and bodies of type abstractions.

THEOREM 3.4 (ANNOTATABILITY OF F;). IfT'Fe: A~ e, thenl rge : A
We can derive a corollary and obtain an inferable term by adding a top-level annotation.

COROLLARY 3.5 (ANNOTATABILITY OF F;). IfT e : A~ ¢, thenD +g (¢’ : A) :

4 Matching Subtyping

This section introduces an intermediate subtyping relation, called matching subtyping, which serves
as a bridge between declarative and algorithmic subtyping. In the algorithmic formulation of F,
subtyping is where local constraint solving happens and where the main algorithmic challenge lies.
Matching subtyping specifies a key algorithmic idea: the use of matching variables to track solved
instantiations. Matching subtyping is sound and complete to the declarative subtyping in Sec. 3.2.

4.1 Matching Variables

A key point emphasized by Pierce and Turner [2000] is that local type inference avoids long-
distance constraints such as unification variables. Instead of solving a unification problem, local
type inference, as well as contextual type inference, requires solving only a matching [Biirckert 1989;
Biirckert 1986; Stirling 2009] (also known as one-sided unification) problem. Before introducing
matching subtyping, we first explain the difference between matching and unification variables.

Unification variables. Many (global) type inference algorithms employ unification variables to
keep track of information found during inference. For example, when inferring the type for Ax. x+1,
they may create a unification variable & as a placeholder for the type of x and then discover that
@ = Int from analyzing the body of the lambda abstraction. Unification variables are powerful, and
they even allow solving problems such as Af. (f 1) + 2. Here f would be given a placeholder type 4.
When encountering the application f 1, two new unification variables ¢; and &, are created and &
is solved to @ = &; — &;. Then & and &, can be solved to Int. As this example shows, solutions for
unification variables can themselves contain other unification variables.

Matching variables. Matching variables can be seen as a restricted form of unification variables
where solutions to a matching variable cannot contain other matching variables. Thus, with
matching variables, @ = & — @; would not be allowed, since the solution &; — @&, contains
other (matching) variables. From this discussion we can see that matching variables would be
quite restrictive for doing inference of anonymous functions, which partly explains why local type
inference approaches typically do not provide such feature. The primary application of matching
in local type inference techniques and F. is to infer type instantiations for polymorphic functions.

4.2 Syntax and Auxiliary Definitions

Matching subtyping shares the same type syntax as declarative subtyping. However, its type vari-
ables serve two distinct purposes: (1) universal type variables, and (2) matching type variables
representing solutions to instantiation. While most work distinguishes these variables using differ-
ent syntax and separate constructors, we differentiate them based on their environment entries,
similar to the representation used by Jiang et al. [2025]. Matching type variables can only be created
during subtyping and do not leak into typing. In other words, solving instantiations is a local
process: if solutions cannot be found with only the local information then the subtyping statement
is rejected. The new subtyping environment has the syntax:

Subtyping Environments Axz=-|Aal| Aad=A
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Subtyping environments introduce a new entry & = A for matching variables, to represent solutions
found for instantiations. This approach aligns with our Agda formalization, where we use de Bruijn
indices to represent type variables, with their meaning determined by the corresponding entries.
Moreover, it avoids substitutions in algorithmic subtyping, as we will explain in detail in Sec. 5.

Ground types and ground environments. A type is ground (I' F Aand T 1 A £ A) if it contains
only universal type variables. In typing, all types are ground, since typing can only use universal
variables. Well-formed environments (+ I and + T' 1 A) contain only ground types. In other words,
matching entries in the environments cannot have solutions that contain matching variables.

FT FreA T T FT1A FT1A F'AEA

- Fh,x: A +FT a T FT A o FTIAa=A

Polarity. Polarity determines which type (subtype or supertype) in subtyping must contain only
ground types. We employ the following syntax to capture polarity:
Polarity <Fo=<t <o

Matching employs two subtyping modes: positive (<*) and negative (<7), where <* serves as
a meta-variable denoting either mode. In the positive mode (<*), supertypes must be ground,
while subtypes may contain matching variables that refer to solutions. The negative mode (<7)
enforces the opposite constraint. In contravariant cases, where we swap the positions of types in
the subtyping relation, the polarity is reversed accordingly.

Grounding. Matching subtyping employs a grounding operation ([A]A) that transforms types
into ground types by replacing variables with solutions recorded in the environment, shown below.
This relation takes an environment and a type as input and produces a ground type as output. This
operation is also the critical component to relate the intermediate system to the declarative system,
and is used in soundness and completeness statements.

[A]Int = Int [Ala=A (ifa=A€A) [Ala = a (otherwise)
[A](A — B) = [A]A — [A]B [A](Va. A) =Va. [A a]lA
4.3 Subtyping

Matching subtyping is shown in Fig. 6 and has the judgment form I' 1 A +,, A <* B. Different
from declarative subtyping, matching subtyping takes two environments. Typing environments
(T') are never modified in the subtyping derivation, but are required since types may contain type
variables (universal variables) in the typing environment. Subtyping environments (A) are where
solutions to instantiation problems are recorded, and are also used to track universal variables local
to subtyping. Another difference is that matching subtyping is polarized by using <*.

Rule IS-Refl uses a m mask in positive mode, establishing that a type A is a subtype of its grounded
result. Intuitively, IS-Refl serves as a base case and appears at the leaves of the derivation tree,
where we have run out of masks (contextual information) and it is time to produce an inference
result. Rules IS-Int, IS-Var, 1S-Arr, and IS-V resemble their counterparts in the declarative system
and are in both modes, though in IS-Arr we must reverse the polarity in its contravariant subcase,
indicated by <¥. IS-Arr-S is in positive mode and also deals with the function types. It covers the
cases with O masks and m masks. In practice, they represent two different situations where the
type C is known from the inference result of the argument or to check the argument. For matching
subtyping, we can merge these two rules into one and distinguish them in the algorithm in Sec. 5.
IS-VL is in positive mode. Unlike DS-VL in the declarative system, we do not perform immediate
substitution; instead, we record a solution & = B in the subtyping environment. The correctness of
the guessed solution is verified by the base cases for solved variables: the two rules at the bottom,
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’ F'Arn, A<*B ‘ (type A is a subtype of B and m contextual information is known for B)
’ FrAv+,A<™ B ‘ (type A is a subtype of B and m contextual information is known for A)
ae (T1A)
IS-Refl < IS-Int ———— IS-Var
F'iArg A<t [A]A T'iArg Int <* Int TiArga <t a
T''"ArgC<T A I''ArgB<*D T'ArgC<™ A F'ArpB<tD
IS-Arr IS-Arr-S
TIArgA—B<*C—D TiAramA—B<*C—D
TiAatrg A<*B T'+B A, TiAG=Bram A< C—D
IS-V IS-VL
IF'AvrgVa. A<*Va.B TiAvrqam Ya. A<TC— D
T'Alé=A]l+n A<'B
— IS-Var-L — — 1S-Var-R
TiAl[@=A]l b a < B TiA[@=Alrg AL a

Fig. 6. Matching subtyping.
which are new to this system. Rule IS-Var-L is in positive mode. When we have a matching variable
as a subtype, then we look up the environment and obtain the solution A (we use the syntactic sugar
Ala = A] for A, @ = A, A, ), then perform the subtyping between the solution and the supertype B.
IS-Var-R is in negative mode, and can only occur with the O mask. If a matching variable occurs as
a supertype, we find its solution and check the equivalence between the subtype and the solution.

Examples. We rerun our examples using matching subtyping rules. The key differences from the
example shown in Sec. 3.2 are three: (1) In IS-VL, instead of directly substituting the type with the
guessed solution, we record it as a matching variable in the subtyping environment; (2) matching
variables are retrieved when a variable appears as the subtype in IS-Var-L; (3) the interpretation of
masks depends on the polarity (reflected in colors): if the subtyping is in negative mode, the mask
will describe the contextual information about subtypes instead of supertypes.

- _ IS-Refl
Tia= VﬂA. B— B B=Inttg f <t S ArrS
Fria=VB.f— B, f=Intrge f— <t Int — Sl
IS-Var-R Tia=Vp.f— fromVp. f— <" Int— 1S-Var-L
Tiva=Vp. - PBragVf—>pf< a Fva=Vvp.f— Proga < Int — S A

Fna=VB.f— Pfrogma— a <t (V. f— f) = Int =

Tt -tpom Va.a s a <P (VB f— f) = Int >

IS-VL

4.4 Soundness and Completeness

To show that matching subtyping is equivalent to declarative subtyping, we prove soundness and
completeness results. We distinguish between the declarative (+%,) and matching () formulation
of subtyping in the theorems below by using superscript letters “d” and “i”, respectively. The key
idea for establishing the soundness is to eliminate variables in subtyping environments: universal
variables in A are merged to the typing environment I' (denoted as I' << A and defined below) and
matching variables are removed after grounding operations on types being performed.
l<-=T < (Aa)=T < A),a Fr<(Aa=A)=T<A

THEOREM 4.1 (SOUNDNESS OF SUBTYPING). IfT 1 A+, A <* B, then (T < A) +4, [A]A < [A]B.

Completeness can be stated by constructing a subtyping environment A, and replacing relevant
parts of types with matching variables based on the polarity.
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THEOREM 4.2 (COMPLETENESS OF SUBTYPING).
o IfT+% [A]JA< B, thenT 1A+, A<*B; e Ifl'+$ A<[A]B, thenT 1A+, A< B.

COROLLARY 4.3 (COMPLETENESS AND SOUNDNESS OF SUBTYPING). For ground types A and B,
e IfT -+, A<* B, thenT+3, A<B o IfT+$, A<B, thenT -+, A<*B.

5 Algorithmic Type Inference

In this section, we introduce an algorithmic system and show its equivalence to the CTAS of F,
via matching subtyping. To realize the algorithm, we adopt several techniques. (1) Following the
design of contextual typing [Xue and Oliveira 2024], we use a teleportation-based algorithm where
type-checking tasks for arguments are deferred by pushing them to the surrounding contexts, and
then dealt with when encountering their application consumers. (2) Matching variables with and
without solutions: Unlike what IS-VL rule does in matching subtyping, where a solution of the
quantifier is immediately guessed, in algorithmic subtyping, we use matching variables that are
unsolved until a candidate solution is found during subtyping. (3) Input and output environments:
Like other type inference algorithms [Bosman et al. 2023; Dunfield and Krishnaswami 2013; Mercer
et al. 2022], we employ input and output environments to track the solving of matching variables.

5.1 Syntax

The algorithmic system shares the same syntax for terms, types and typing environments. Like
matching subtyping, environments are separated into typing environments and subtyping environ-
ments. The difference is the addition of a new entry for unsolved matching variables & in subtyping
environments, and two more syntactic categories: surrounding contexts and generic consumers.
Surrounding contexts describe the contextual information available for the expression. Contexts can
be either empty (m), a full type A and terms e followed by another surrounding context. For example,
when inferring the type of expression id id 1, the surrounding context of id is ~ ~
indicating id is applied to a term id and then applied to another term 1. Generic consumers classify
terms that are inferable and can be generically dealt with contextual subsumption.

Subtyping Environments Au=-|Na| Aa |Aa=A
Surrounding Contexts Sui=m|A|[e]~Z
Generic Consumers gu=i|x|e:A| Aa.e

5.2 Typing

The complete set of typing rules is shown in Fig. 7. Most typing rules follow the design of the
original algorithm for contextual typing. Only subsumption rule AT-Sub is modified to accommodate
our new subtyping rules, and three additional rules are added to type-check type abstractions
and applications. In AT-Sub, we first infer the type of the generic consumer g, and then check the
inferred type A with the context . We call subtyping with an initial empty subtyping environment.
I'+ A <* 3~ Bisasyntactic sugar forT' 1 - - A <* X 4 - ~» B. Algorithmic subtyping computes
the expected inference result B, which is an instantiation of A. For example, A can be a polymorphic
type Ya. @ — @, and B can be its instantiation Int — Int if the context is| 1|~ m. AT-TLam1
infers the type of the type abstraction if its body infers the type A in an extended environment and
AT-TLam2 checks the type abstraction with the type Va. B if the body can be checked by the type B
in the extended environment. We note that AT-TLam2 overlaps with the subsumption rule when the
context is a polymorphic type Va. A, since Aa. e is treated as a generic consumer. This overlapping
is not harmful since, in this situation, the rule AT-TLam2 will subsume the subsumption rule, and
one can always prioritize AT-TLam2 over the subsumption rule in the implementation.
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(Under typing environment I' and context X, term e infers the type A.)

x:AeTl I'tA=>e=8B
——F—F  AT-Lit — Al-Var AT-Ann
'-m=i=Int T're=x=A T'rm=e: A=A
ILx:ArB=e=C T're=e=A I'x:ArYX=e=8B
AT-Lam1 AT-Lam2
TFAoBoixemA—ocC It[e]~S=lxe=A—B
AT-TLam1 AT-TLam2 AT-App
Tarm=e= A lLa+tB=e= A I't[e]vEZ=e=A—>B
I'rm= Aa.e = Va. A I'tVa.B= Aa.e > Va. A I'rX=e e =818
AT-TApp AT-Sub
I+rm=>e=Va.B T+[A/a]B<*S~C Trm=g=>A T+m TrA<'YX~wB
r-2=e@A=C '-X=g9g=23

Invariants: ()T (2)TEA
Fig. 7. Typing rules for the algorithmic system.

For type applications, we first infer the type of term e to a polymorphic type Va. B, and then
check the instantiated type [A/a]B with the context X. The inference result C of the subtyping is the
result for the type application. Algorithmic typing has two invariants: (1) all typing environments
are well-formed; (2) all inferred types are ground types.

Examples. We show a derivation for (id id) 1 below. Suppose T is id : Ya. ¢ — a. We first
eliminate the applications until we reach the generic application consumer id. We have a context

~ ~> M, and then use this context as the supertype for the type of id. Our algorithmic

subtyping will compute the inference result (Ya. @ — a) — Int — Int, which is the type of id.
F|+V0{.a—>as+f\»f\»l—|-'vv>(‘v’a.a—>a)—>(lnt—>lnt)

FI-'\«>Ml:idz(Va.a—)a)ﬁ(lntﬁlnt)
Tr[1]~m=idid = Int — Int
I'-m= (idid) 1= Int

AT-Sub

AT-App

AT-App

5.3 Subtyping

Algorithmic subtyping distinguishes two kinds of judgments: subtyping inference (Fig. 8) and
subtyping checking (Fig. 9). Subtyping inference has the formT 1 A+ A <* 3 4 A’ ~» B whereas
subtyping checking is of the form I' 1 A + A <* B 4 A’. Both judgments take typing (I') and
subtyping (A) environments as inputs and yield an output subtyping environment (A”). In subtyping
inference, a type is compared against a surrounding context and produces a supertype B based on
the surrounding context. In subtyping checking, a type is compared directly against a supertype
B. Furthermore, subtyping inference always operates in positive polarity (surrounding contexts
come from typing and are ground) and is interdependent with typing, while subtyping checking
can operate in both polarities and is independent of other judgments.

Subtyping inference has several important invariants, shown at the bottom of Fig. 8. Firstly, all
environments are ground environments (1). Secondly, the output environment has the same length
and order as the input environment (2). The only difference is that unsolved matching variables in
input environments may be solved in output environments. This invariant is formalized in Sec. 5.4
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TIArA<t*S4AN ~ B ‘ (Under T and A, type A is the subtype of ¥ and outputs A’ and B.)

AS-Empty AS-Type AS-VL
T'1 A Felosed A TIAFA<*B4AN  TiAdGrA<' [e]~Z4AN,6="C~ B

FTIAFA<"m4A~ [AJA TIAFA<*B4AN B  TiArVa. A< [e]~»Z4A w B

T A Feosed A T+t [A]J[A=e= A TTArB<tS4A D
T'"A+rA—> B<*[e]~24A ~w [A]JA>D

AS-Trm-C

TiAbpenA THrm=e=C T'TArC<  A4AN TINFB<PSH4AA” w D

AS-Trm-O
F'"ArA—>B<"[e]»Z4A" wC—D

TiA[@a=AlrA<" S 4A[a=A] ~ B
— ~ AS-SVar ——————— AS-Infer-Type
TiAl[@a=Alra <" X 4A[@=A] »» B TFA= A

FI—@'\»Z:A Tra=>e=> A 'r>=3B
As-Infs AS-Infer-Con
TiA[@]ra<t[e]~Z4A[a=A] w A I+[e] 2= A—>B

Invariants: (1) FTi1Aand+T1A" (2JACA B)T1IAEYX AHOTIAEB (B)T 1A Felosed A

Fig. 8. Rules for subtyping inference.

as environment extension ( Fig. 11). Thirdly, polarity in subtyping checking implies the ground
property: in the positive mode, the supertype is ground, whereas in the negative mode the subtype
is ground (3). Finally, the inference result of subtyping inference is always ground (4).

An important distinction that plays a fundamental role in the subtyping rules is between closed
and open types. A closed type is a type where all matching variables have already been solved,
whereas an open type may contain unsolved variables. For instance consider the type & — a. If
the subtyping environment contains an unsolved variable for « (for instance, A £ &) then the
type is said to be open. In contrast, if the subtyping environment contains a solution (for instance,
A = (& = Int)) then the type is said to be closed. All types are closed in output environments (5).

Subtyping inference rules. The rules for subtyping inference are presented in Fig. 8. In rule AS-
Empty, when the context is empty, and A is a closed type, we use the input environment A as
output, and compute the grounded result of A as the inference result. Rule AS-Type applies when
the context is a ground type B. This case corresponds to traditional subtyping, and so we just
switch to subtyping checking. The inferred result is just B. In rule AS-VL a universal type Va. A,
matches a term context [e]| ~ . In the algorithm we simply introduce an unsolved matching
variable & as a placeholder for the solution found later. Note that it is possible that no solution
is found. For instance, in the case that we have Va. Int — Int, and the argument is 1. The rule
works in both cases: whether a solution is found or not and the notation @ =’ C expresses these
two possibilities (either we get a solved or an unsolved variable). Rule AS-SVar applies when the
subtype is a solved matching variable. In this case we look up the solution in the environment and
compare it to the context. The last rule AS-Infs applies when the subtype is an unsolved matching
variable . The only possibility that we have to find a solution in this case is that we must have
inferable term arguments, and we must also have an output type (the context ending with a full
type). The auxiliary judgment I' - ¥ = A takes a context with inferable arguments and an output
type and computes a type A that becomes the solution to &.

Left-to-right inference. AS-Trm-C and AS-Trm-O are two interesting rules: the subtype is a
function type A — B, and we have a term context [ e |~ 3 in the place of supertype. Although
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TIAFA<*BAN (Under T and A, A is a subtype of B and computes A’.)
ae(T1A)
< AS-Int < AS-UVar
FTTArInt<FInt4A FTTAra<Ta4A
AS-MVar-L AS-MVar-R
TiA[@]ra <t A4 A[a=A] TiAlag]l A< a4 Ala=A]
~ " — AS-SVar-L ~ — — AS-SVar-R
FTiAld=Alra <t A4 A =A] FTIAl@a=Al+FA < a4 Ala=A]
FTIAFC<TFA4N F'iA"rB<*DA4A T'iAarA<*B4AN,a
< ” AS-Arr y - AS-V
F'N'"A+rA—-B<*C—>D+4A F''"ArVa. A<*Va.B4A

Invariants (<*): ()rTi1AandrT 1A 2)ACA @B)TIAEB (AT 1A Fosed A
Invariants (7): ()rTi1AandrT 1A 2)ACA @B)TIAEA AT 1A Feosed B
Fig. 9. Rules for subtyping checking.

their syntax is overlapped, they can be distinguished by the two disjoint conditions to have a
deterministic algorithm. We first check whether A is closed or open. If it is closed, we can safely use
its grounded result to check the argument e using typing. If A is open, we infer the type of e, and
obtain the type C. C will be used for subtyping checking with A and computes an environment A’
which contains the solution of matching variables in A. A” will be used as the input environment
for the subtyping inference in the final premise. The consequence of using open and closed types
to distinguish whether we perform inference or checking on the argument is that we have a left-to-
right bias. For example, when A is « — a and e is Ax. x where « is unsolved in the environments,
we will immediately reject this case even though the solution for & can be found later. In both rules
the final premise simply checks whether the output type B matches with the remaining context X.

Subtyping checking rules. We present the subtyping checking rules in Fig. 9. AS-Int and AS-UVar
are simply equality checks and can be in both modes, producing the same output environment.
AS-MVar-L is in positive mode, which tells us that A is a ground type, thus it can be used as a
solution for unsolved variable . Rule AS-MVar-R is a dual rule for the negative polarity. AS-SVar-L
and AS-SVar-R cover the case where the subtype is a solved matching variable «. In this case we
just have to check that the already found solution is the same as the newly found solution. AS-Arr
is for the subtyping rule for arrow types and it is mostly standard. The only notable point is that we
have to reverse the polarity for subtyping checking of the input types. Rule AS-V covers universal
types in a standard way: we just have to check whether the bodies of the universal type are in a
subtyping relation in an extended environment with the universal variable .

Examples. We continue our example shown in Sec. 5.2. We use I as id : Va. @ — «a, A as
a=Vp. f — p,1as Int and omit inference and checking for terms in contexts for space reasons.
First we have the polymorphic type as the subtype and the term context as the supertype, we will
create an unsolved matching variable o, which will be later solved as V. f — f from the inference
result of id. Then we will have V3. § — f compared with the remaining context ~ m. We

create a new unsolved matching variable 8, which will be solved as Int in the output environment.

5.4 Invariants and Properties

In this part we show some invariants and key properties including the decidability of the algorithm.

Environment extension. Environment extension captures the information growth of the algorithm.
As subtyping proceeds, the algorithm may discover more solutions to unsolved variables. Thus
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R AS-Empty ~ ~
TIABrIS  BAANS=T TIAF=IrB< MAANL=TwI
AS-Trm-O ~ ~
TiABrB— <t 1] mAAf=TIwII
AS-VL
I“lAI—V,B.ﬁ—>/3S+w>I-|Aw}I—>]I
AS-EVar-R AS-SVar
TiarVB.p—o <" a4A FIAI-OCS+’\/>I-|A’V\'>H—>I[
AS-Trm-O
I‘lo?l-a—>as+'\»'\f)l4Aw(V0{.a—>a)—>(}I—>I[)
AS-VL
F|+Va.a—>as+*\»f\»l%-w(\v’a.aﬁa)—)(l[—)ﬂ)
Fig. 10. Subtyping inference derivation for (id id) 1.
r > EV-UVar ——— — ~ EV-EVar — r ~ - EV-SVar
Aa, N c, Aa A Aa,N c, Na=AA ANa=AN Cc, Aa=AA
Acy, N ACa N A Cg A AaCyN,a
——— E-nt ———— E-Var - E-Arr —————EV
A Cine A AC, A A Cuasg A A Cya a A

Fig. 11. Environment Extension under variables and types.

the output environment always has at least as many solved variables as the corresponding input
environment. Environment extension appears in several forms in our proof, but here we only
formally show two main versions, informally explaining the remainder when they arise. Interested
readers can find the details in the Agda proof in the supplementary material. We present the
environment extension under types and under type variables in Fig. 11.In A € A’, A represents
the input environment and A’ represents the output environment in subtyping. Due to matching
subtyping, we are able to enforce a strict invariant for this relation: the environments must have the
same length, and the entries must remain in the same order. Thus, the only difference between input
and output environments is that the unsolved matching variables in the input environment may be
solved in the output environment. A C4 A’ requires that any free variable in A, if appearing as an
unsolved matching variable, must be solved in the output environment A’, leaving other entries
unchanged. This relation relies on the auxiliary relation A ¢, A’, indicating that only the entry
corresponding to a will be affected between the two environments. Interesting lemmas include:
LEMMA 5.1 (SUBTYPING ENVIRONMENT EXTENSION).
e fTIAFA<"I 4N ~» B, thenA Cq N.
e fTIAFA<*BAN,thenACyN; o IfTIA+rA<" B4A,thenACgAN.

This lemma shows that all the free matching variables in type A are solved in the output
environment A’ for the two subtyping judgements.

Decidability. Our algorithm is decidable by the following two theorems.
THEOREM 5.2 (DECIDABILITY OF TYPING AND SUBTYPING).
e I'+3 = e= Aisdecidable. o T 1A+ A<"34A ~> Bisdecidable.

The decidability of subtyping and typing are proved simultaneously. The measure used for typing
is || + |e|, and the measure for subtyping is (|2, |A|%, |A|"). Below is the definition of sizes: |A|*
counts solved matching variables in A, and |A|Y counts universal quantifiers in A.

m| =0 lil, [x| = 1 la|Ale=Al = 1
Al =1 |Ax.e| = le| + 1 |A — B|* = |A]* +|B[*
[e]~ Z[=le| + 2] +2 le @Al |e: Al =le| +2 IVa. A = |A|A®
le1 ex| = |e1] + |ea] +3 |A]® = 0(otherwise)
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5.5 Soundness and Completeness via Matching Subtyping

To prove the equivalence between a CTAS and our algorithmic system, we must address two main
gaps between the two systems: masks and contexts, and environments.

Soundness. Constructing surrounding contexts from masks presents a challenging task. Readers
might assume that surrounding contexts provide more information than masks, but this is not the
case. Masks precisely indicate how arguments type-check in the typing: inference or checking,
while contexts do not provide this information. In previous work [Xue and Oliveira 2024], soundness
was proved by reconstructing the original application from the arguments in surrounding contexts
and demonstrating that the resulting program is well-typed in CTAS. The previous proof also relied
on a customized induction principle, making it difficult to extend those systems.

In this work, we simplify the proof strategy by introducing a new variant of the algorithmic
system: T 1 A+ A <* X 4 A’ ~» B | m, whose rules can be found in the appendix. Different from
the algorithmic formulation, this variant computes an extra output: the mask m to describe how
contexts are used during inference. This algorithmic variant is shown to be sound with respect
to matching subtyping. For environments, we reuse the output environments A’ as the subtyping
environments in the matching subtyping, while keeping their typing environment I' the same.

LEMMA 5.3 (SOUNDNESS OF INSTANTIATION). IfT 1 Ald¢]FA <* Z4A’[& = B]~ C | m, then A%,.

This lemma states that each matching variable in type A is solved in the algorithm, which can be
captured by the instantiability relation A%, used in matching subtyping.

THEOREM 5.4 (GENERALIZED SOUNDNESS OF SUBTYPING). IfT 1A+ A <* 3 4 A" ~» B | m, then
TA vy A<*B.

THEOREM 5.5 (GENERALIZED SOUNDNESS OF TYPING). IfT +X = e = A | m, thenT +,, e : A.

By further establishing the equivalence between the algorithm and its variant, we can derive the
soundness of the original algorithmic system as corollaries.

COROLLARY 5.6 (SOUNDNESS OF TYPING).
e fTrm=e= A thenl'tge:A; o IflT+B=e= A thenT +ge:B.

Completeness. Building contexts from masks is straightforward, since masks provide sufficient
information to create expressions that are inferable or checkable. Following the proof strategy of
Xue and Oliveira, we define a relation I' 1 A + (m, B) ~ X that creates a context Y with the mask m
and the type B. The main challenges in establishing completeness statements are threefold.

(1) We have to align intermediate and algorithmic environments. In matching subtyping, environ-
ments contain solved matching variables only, and the solutions are obtained immediately in
the IS-VL rule. In contrast, the algorithm uses input environments with unsolved matching
variables, introduced by the AS-VL rule, and solutions are discovered incrementally as the
types are analyzed. For example, in the matching subtyping statement T | - +oog YVa f. ¢ —
B — B <*Int - Int — Int, the solutions for « and § are already present in the environment,
whereas the algorithm determines these solutions only in processing the types « and g — S.

(2) We have to deal with the gap between different treatments of arguments. In matching subtyping,
application masks are eliminated without side conditions in the subtyping rules. For example,
IS-Arr-S can be applied in any situation, whether the argument is handled by checking or
inference. However, in the algorithm, to ensure determinism, we enforce several side conditions
to control when to perform inference or checking. For example, to type-check the term succ 1,
our declarative system can assign either a O or m mask. However, the algorithm will only infer
the type of arguments when the information is not sufficient for checking, following the open
restriction. The consequence is that the argument 1 can only be checked in the algorithm.
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(3) Matching subtyping may choose a less precise solution than the algorithm. For instance, if the
subtype is Ya. a, with mask OO and supertype Int — Int, matching subtyping might guess
solutions like Vf. f — p or Int — Int. In contrast, the algorithm always computes a unique
type. For example, with context ~> Int, the matching variable « is solved as Int — Int.
Thus, the solutions in environments in the two systems do not always coincide.

To address (1), we define a refined environment extension A C4,, A’ to build the input environ-
ment, similar to the relation shown in Fig. 11. In the refined environment extension, the treatment
of free variables in A depends on its position as indicated by the mask m. This relation is pro-
cessed backwards and non-deterministically: we know the output environment A’ from matching
subtyping and need to create the input environment A, which contains the unsolved matching
variables by altering the relevant entries in A’. This relation is delicate, as if we change the solved
matching variables to unsolved matching variables in the input environments, and then build the
algorithm derivation, we must ensure that the algorithm will successfully solve those variables.
For example, if we have the matching subtyping T 1 @ = Int, f = Int kg @ <* Int, we can create the
input environment &,B =Intora= Int,ﬁA = Int but not d,ﬁ or a = Int, ,B Furthermore, we prove
several environment stability lemmas. These allow us to state that typing and subtyping hold even
when the entries in the input and output environments are altered, provided that the free variables
in the types remain unchanged. For example, T' 1 &, f F & <* Int F & = Int, §, is interchangeable
with T | &,B =Intra<tIntra= lnt,B = Int, since ﬁ is irrelevant to this derivation.

For (2), we need to prove a general subsumption lemma for the algorithmic system to handle
cases where checking is expected, but an inference result is obtained.

LEMMA 5.7 (TYPING IMPLIES SUBTYPING). I[fT +3X = e = A, thenT F A <t 3w A
COROLLARY 5.8 (SUBSUMPTION OF ALGO. TYPING). IfT +m = e = A, thenT F A= e = A

For (3), we detect that the scenario appears with empty-like types. For example, if the subtype is
Va. a or Va B. @ — p, there will be no constraints for guessing the solution of the variables that
appear only at the end of the type. We perform a case analysis on this situation and construct a
new output environment based on the information from the supertype of matching subtyping. We
only show the simplified version of completeness here, with the full story detailed in the appendix.

THEOREM 5.9 (GENERALIZED COMPLETENESS OF SUBTYPING). IfT 1 A’ +,, A<* B,A Cy4,, A, and
T''A+(mB)~3,thenTIArA<*S 4A ~» B.

Combined with completeness between declarative subtyping and matching subtyping in Thm. 4.2,
we obtain completeness with respect to the declarative typing, with m = m and O cases as a corollary.

THEOREM 5.10 (GENERALIZED COMPLETENESS OF TYPING). IfT v, e: AandT 1 -+ (m,A) ~ 3,
thenl' X = e = A.

COROLLARY 5.11 (COMPLETENESS OF TYPING).
o [fTrge: A thenTrm=e=A; o Ifltge: A thenT+HA=e= A

6 Extensions, Expressiveness Evaluation and Limitations

In this section, we discuss how F. can be extended to support some common practical features.
We also report on F.’s expressiveness evaluation through a comprehensive suite of examples
by comparing our system with existing approaches in the literature and identify limitations. All
features and examples in this section are implemented in our prototype.
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6.1 Uncurried Functions

While our core calculus focuses on curried function applications, uncurried applications are equally
important in practice. Supporting both curried and uncurried applications would provide better
flexibility for programmers. We present a direct extension with dedicated syntax and rules below,
and discuss an alternative approach using tuples in Sec. 6.2.

For syntax, we add uncurried function types A — B, uncurried lambda expressions Ax. e, and
uncurried applications e(e), where the overline notation represents sequences of elements. The
extension to the declarative system is straightforward, by mirroring the rules for curried functions
and analyzing the argument list sequentially. The non-obvious rule for the algorithm is:

TIAFA e, 3B 4N TN FB<tSH4A” v C

F|A|—Z—>BS+~>Z—|A”«~>§—>C

When the subtype is an uncurried function type and the supertype is an uncurried argument
context (| e | ~ ), we need to analyze each type in A and then decide whether to infer the type
of e; or check it. This process is handled by the auxiliary judgment T 1 A+ A; 3 e; 3 B; 4 A/,
whose logic follows the same strategy as how we handle curried function application in F.. We
first carry out case analysis on A; to determine whether it is open or closed, and then perform the
corresponding operation for inference or checking. Again, we note that the overline in AS-Term-
UC denotes a sequence of such judgments, which follow a left-to-right order, passing the output
environment to the next judgment. We present the full formalization in the appendix.

Our uncurried extension offers better locality compared to LTI by extending locality to cover
the full set of arguments in an application, rather than being confined to individual (uncurried)
applications. This enables us to accept examples such as consts(1)(true), where LTI fails because it
cannot solve type variables by considering arguments across different uncurried function calls.

AS-Term-UC

6.2 Tuples

We extend F. with tuples (e, e;) and product types A X B by following the contextual typing recipe
by Xue and Oliveira [2024] to allow contextual information propagation into tuple expressions
beyond projections. For CTAS, we extend the mask with a projection mask: m ::= --- | p m where
p can be fst or snd to represent the context of projections. We show three key typing rules below.
Like applications, projections fst e increase the contextual information of e, as shown in DT-Fst.
For tuple expressions (ej, e3), if the mask is a (DT-Pair), we type-check both components with a; if
the mask is a projection mask fst m (DT-Pair-Fst), we type-check the first component with mask m,
and the second with m. For the algorithmic system, we also have two new context entries fst ~> %
and snd ~» X, with rules that simply mirror the CTAS rules. We present the complete set of rules
in the appendix, including typing and subtyping rules for both CTAS and the algorithmic system.

DT-Pair DT-Fst DT-Pair-Fst
T'tgeg:A Thyey: B I'Fistm) €: AXB Trne A I'tee;:B
'k, (e1,e0) : AXB Ty fste: A I'F(fst m) (e1,€2) : AXB

Uncurrying via tupling. An alternative approach to modeling uncurried functions is to use tuples.
Our design enables us to accept examples like (fst (Ax. x,2)) : Int — Int and (fst (id, 1)) 2.
However, there are challenges in propagating the type information across the tuple components.
For example, suppose we have twice’ with the type Va. (o, — a) — «, F, will reject the examples
twice’ (1, Ax. x) and twice’ ((Ay. (1, Ax. x)) 2). The limitation stems from the fact that the current
contextual information for arguments is limited to either all (O0) or nothing (m). This is reflected in
algorithmic subtyping as well: we either infer the type of the argument or have full information
to check it. To support this, we need a more fine-grained mechanism for describing contextual
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information about arguments. A possible option is to extend the atomic masks with (ay, a;) and
design corresponding rules, but designing an equivalent algorithmic system would further require
non-trivial changes. Thus, we leave this for future work.

6.3 Annotated Lambdas

Supporting annotated lambdas Ax : A. e requires directly adding two rules to CTAS. The typing
rules for annotated lambdas differ from those for unannotated lambdas in two ways: (1) The
DT-AnLamT rule covers one additional case where the context can be empty. Since we have the
information of the binder, we can directly type-check the body with the extended environment;
(2) The DT-AnLam2 rule covers the case where the argument can be checked against the binder’s
type, whereas an unannotated lambda can only rely on an inferable argument in the context. The
algorithmic typing rules simply mirror the CTAS rules, and are straightforward to implement.

I'x:Avr,e:B ILx:Arpe: B
DT-AnLam1 DT-AnLam?2
TroAx:A e:A— B F'tgmAx:A.e:A— B

6.4 Evaluating Expressiveness

To demonstrate the expressiveness of F. and assess its practical applicability, we have conducted
an evaluation on a comprehensive suite of example programs from Serrano et al. [2018]. A table
summarizing all examples is included in the appendix, together with a comparison to other ap-
proaches to impredicative polymorphism [Botlan and Rémy 2003; Leijen 2008, 2009; Mercer et al.
2022; Parreaux et al. 2024; Serrano et al. 2020; Vytiniotis et al. 2008]. Notably all of the examples
can be encoded in F.. This is not surprising, since F. has explicit type applications and therefore
we can always resort to explicit type applications and extra annotations to type check programs.
Of course the other concern is how much explicit type information or program rewriting is needed.
Several cases require additional annotations or n-expansions. Some of these cases arise from dif-
ferent design choices between local and global type inference. In particular, like other local type
inference approaches, we do not support let generalization, inference of lambdas or inference of
type abstractions (for example writing Ax. x instead of Aa. A(x : a). x for defining a polymorphic
identity function). Therefore programs using such features in Serrano et al.’s programs will require
more verbosity in F.. There are however, two limitations that are cumbersome in practice and
would be interesting directions for improvement in future work.

e Order-relevant instantiation. Following the current practice, F. uses a left-to-right instantia-
tion order, requiring the type variable’s first occurrence to be solvable. As discussed in Section 2.2,
this means that examples such as twice (Ax. x) 1 are rejected. Some of the F, translations from
Serrano et al.’s programs are affected by this limitation. An interesting direction for future work
would be to study order-irrelevant instantiation, which would be more natural and less surprising
to programmers, and would remove an important limitation in existing LTI implementations.

o Application-triggered instantiation only. Like LTI, F. only triggers instantiation in ex-
pressions that are applied to arguments. This behavior rejects the example map id: the type
of map is Ya f. (a¢ — f) — [a] — [p], requires the first input to be a function type,
whereas id provides only a polymorphic type, and instantiation does not occur on id. The
typable version is Aa. map (id @a), enforcing that id is a function type through an explicit
type application. Similarly, map head (single ids) (where ids : [Va. @ — «]) is translated as
map (head @(Ya. @ — @)) (single ids) by instantiating the argument via a type application. In
practice, rewriting such programs can be cumbersome, and it would be desirable to allow implicit
instantiation without explicit arguments in such cases.
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7 Related Work

Local Type Inference. Local type inference [Pierce and Turner 2000] has been extensively compared
with in Sec. 2.1. In summary, F, provides a more disciplined declarative specification that does not
explicitly distinguish uncurried applications. F, also provides a formal characterization of order
relevance that is commonly adopted by practical implementations adopting LTI F. targets standard
System F, while Pierce and Turner have shown that LTI can also deal with extensions of System F
that require other forms of non-structural subtyping. In particular, their variant of System F includes
T and L types (and a more advanced formulation with bounded quantification). In their formulation,
examples like f : Ya. ¢ — a — a, f 1 true are accepted and the inferred typeis T — T — T.
From the specification point-of-view it is straightforward to deal with non-structural subtyping
in F.. Our Agda formalization already includes a variant with a declarative specification as well
as a formulation of matching subtyping that extends F, with T and L types. We already proved
soundness and completeness between matching and declarative subtyping, and have essentially all
the results corresponding to Sec. 3 and 4 mechanized. The extension is simple, and only adds two
additional rules for T and L types, and modifying the matching variable rules in Fig. 6.

TiA[@a=AlrgB< A

— DS-Top ———  DS-Bot — — IS-Var-R
F'rg AT ', L<A TTAl[@a=A]l+rgB<™ «

As adding these rules requires no changes to other rules, it demonstrates the modularity and
scalability of F.. However, the addition of T and L further implies some changes to algorithms since
an eager approach to finding instantiations cannot be adopted. Pierce and Turner show that the use
of matching is also helpful in dealing with T and L and a lazier approach to solving instantiations.
We are confident that those ideas can be adapted to local contextual typing, but we have not yet
formalized the algorithm, which is left for future work.

The majority of follow-up work to LTI adopts designs with uncurried applications, following
Pierce and Turner’s approach. As a result, many of the limitations discussed in Sec. 2.2 still apply.
Colored local type inference (CLTI) [Odersky et al. 2001; Plociniczak 2016] directly extends Pierce
and Turner [2000]. Our presentation of the CTAS borrows colors and ideas from CLTI. CLTI
decorates types to be inherited (or known from the context) and synthesized (or unknown from the
context) to enable partial type information (from arguments) to assist the inference of polymorphic
functions. Unlike CLTI, instead of decorating types, we use masks and avoid changes in the type
syntax. The original purpose of CLTI is different from contextual typing, and enables the inference
ofg: Va. (Int = a) = a + g (Ax. x), by exploiting the known parts (Int) of the input type Int — «
and argument Ax. x. This example is rejected by LTI and F.. An extension of F. allowing such
examples seems possible, but we have not formalized it yet. Implicit polarized F [Mercer et al. 2022]
reformulated System F in terms of call-by-push-value (CBPV) [Levy 2001]. Mercer et al. observe that
the shift structure mediating between computations (functions) and values in CBPV coincides well
with the common practice in type inference to utilize application spines (uncurried applications) to
deal with fully unambiguous function calls. However, as acknowledged by Mercer et al., their work
is not proposed as a practical type inference algorithm, since a CBPV calculus is usually used as an
intermediate language that programmers do not directly interact with. To use it as the base system,
programmers have to adopt an unconventional polarized term and type syntax.? F., on the other
hand, can type-check programs written in traditional System F syntax.

The only other approach that adopts curried syntax like ours is spine-local type inference [Jenkins
and Stump 2018], making it the closest to our approach in terms of the programs that are accepted.
Spine-local has a hybrid approach where annotations are explored prior to arguments, but then

2This polarization has a different meaning from the one in F,.
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the remaining inference proceeds left-to-right. The approach in base F. is purely left-to-right,
thus annotations are explored at the end. The annotation still helps to find solutions to instantiate
functions, but it does not provide more information when checking the arguments. This makes F,
reject some examples from spine-local type inference, such as:
pair : Va . a = f — {a X B) F pair (Ax. x) 1 < ((Int — Int) X Int)

We have experimented with a variant of F, that can accept programs like the above. We have
proved all properties for this variant as well, which is included in our Agda formalization. All the
rules are detailed in the appendix. To support curried application, spine-local type inference uses
extra judgments to dispatch the application rules in the form of spines and use meta-functions
to find application heads. Unlike F. and all other works on LTI, spine-local type inference does
not employ subtyping. This design works well for System F, but seems hard to extend with new
features. For example, the addition of T and L to the specification of spine-local type inference is
not straightforward, since subtyping is needed. Furthermore, the addition of these types interacts
with applications. For example, f : L  f 1 : Int is a valid application in a system with L. Thus, their
application judgments would require non-trivial modifications in the presence of subtyping. As we
have seen earlier, our CTAS can incorporate features such as T and L easily and modularly.

ML-style First-class Polymorphism. There is a long line of work on extending ML-style type
inference with first-class polymorphism [Botlan and Rémy 2003; Garrigue and Rémy 1999; Serrano
et al. 2018; Vytiniotis et al. 2006], which in general requires fewer annotations compared to F,
and LTL. HMF [Leijen 2008] aims at a conservative extension over Hindley-Milner and requires
annotations only on polymorphic parameters and ambiguous impredicative instantiations. Its full
version takes application spines as a whole into account, meaning it could have a different result
for f e; e; and let g = f e; in g e;. FreezeML [Emrich et al. 2020] introduces a notion of “frozen”
variables that inhibits further instantiations. It achieves a predictable and easy-to-implement system.
F. can be viewed as freezing all arguments by default. QuickLook (QL) [Serrano et al. 2020] gathers
information for all arguments, on top of the ordinary type inference procedure, for aiding in the
type inference of the function head. If an instantiation is impredicative, it can only be applied if
the target variable is guarded by an invariant type constructor to avoid the loss of principal types.
Therefore ambiguous examples like single id are rejected by a guardedness check in QuickLook.
Like all other local type inference techniques, F. does not instantiate quantifiers of arguments
(unless the argument itself is another application). Similar to QL, F. does not instantiate types
inside type constructors (including domain types of —). A shared commonality between HMF,
FreezeML, QuickLook and F. is that they all faithfully adopt the type syntax of System F. In general,
F. and LTI are less ambitious in terms of type inference and aim instead at lighter type inference
approaches, that can scale well to other more complex advanced type system features. Moreover,
many works on ML-style polymorphism do not support explicit instantiations. F., like other works
following local type inference, supports both implicit impredicative instantiations and explicit
impredicative instantiations naturally.

Most work on ML-style first-class polymorphism do not deal with other forms of subtyping.
SuperF [Parreaux et al. 2024] is an exception, which also considers intersection and union types.
SuperF takes the inspiration from MLSub and algebraic subtyping [Dolan and Mycroft 2017; Parreaux
2020]. By making the subtyping relation form a distributive lattice, MLSub can reduce the subtyping
constraint solving problem into bi-unification. However, the algebraic structure also means less
flexibility in choosing features. For example, algebraic subtyping approaches must include very
specific type features such as T and L types, intersection and union types, and recursive types, as
well as distributivity axioms in subtyping. Thus these approaches cannot be easily applied to type
systems without those features, such as System F, and instead require modifications or extensions.
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Predicative Higher-rank Polymorphism. Another important line of work is predicative Higher-
Rank Polymorphism (HRP) [Dunfield and Krishnaswami 2013; Jones et al. 2007; Odersky and Laufer
1996]. They take another approach to achieve decidable subtyping by restricting the instantiation
to monotypes, i.e., types that do not contain any universal types:

I'tmono T Tk [r/a]A <: B

I'-Va.A<:B

They also allow inferring monotypes for fully unannotated functions. Their algorithms generally
adopt unification-based techniques to solve these monotype instantiations. Although monotypes
provide an elegant characterization of what types are guaranteed inferable, such a restriction
makes these systems less expressive than System F. F¢ [Zhao and Oliveira 2022] mitigates the
loss of expressive power by allowing polytype instantiations to be explicitly annotated. It also
adds T and L types. Several works further extend F¢ with other subtyping features. Fg [Cui et al.
2023] adds bounded quantification and F¢, [Jiang et al. 2025] adds intersection and union types to
predicative HRP. However, while the type syntax is extended, the syntax of monotypes (i.e. the
implicitly instantiable types) is still restricted to simple forms, limiting their power in inferring
implicit instantiations. F., on the other hand, can infer impredicative instantiations by utilizing
information from the surrounding context.

Matching in Type Inference. Matching [Huet 1976], also called one-sided unification [Birckert
1986], is the problem of solving (in)equations where only one side has unknown variables to solve,
and the other does not. This distinction was also identified by local type inference [Pierce and
Turner 2000], but was rarely exploited by other type inference techniques afterwards. The major
difference between unification and matching happens during solving equalities & = A. & could
occur free in A in the setting of unification, but never in the setting of matching. Usually, unification
algorithms adopt an occurs-check requiring & ¢ FV(A) to prevent non-termination. In simple
type systems, the occurs-check does no harm since there cannot be a solution B for & such that
B=[B/a&]Aif @ € FV(A). For example, @ = & — Int has no solutions with STLC types. Rejecting
such patterns directly maintains a complete algorithm. However, with more complex subtyping,
the occurs-check can wrongly reject (in)equations with solutions. For instance, @ < @ — Int has
solutions like @ = L (ie. L < 1 — Int) in systems with T and L, or solutions like & = Vf.
in systems with universal types. The same issue arises with several other features, including
intersection and union types [Barbanera et al. 1995; Barendregt et al. 1983; Compagnoni and Pierce
1996; Coppo and Dezani-Ciancaglini 1978; MacQueen et al. 1986; Pierce 1991; Pottinger 1980;
Reynolds 1991], which are examples of features that lead to a non-structural subtype relation.
Non-structural subtyping allows types with different constructors to be compared, making the
occurs-check invalid. Without the occurs-check, there are no known complete algorithms for
finding instantiations, and the decidability of subtyping remains unknown for most forms of non-
structural subtyping [Dudenhefner et al. 2016; Su et al. 2002]. Unlike unification, matching is known
to be decidable in many more settings, including the cases where the solution domain is extended
with intersection types [Dudder et al. 2013], or the matching itself is higher-order [Stirling 2009].

8 Conclusion

Local contextual type inference offers a fresh path through the long-standing complexity of partial
type inference. With contextual typing and CTAS, we sidestep the complex specifications of earlier
LTI approaches. Our mechanization closes the gap between theory and practice, while the simplicity
of F. opens doors to scalable extensions like subtyping. We hope that, as modern languages grow
increasingly ambitious in their type systems, local contextual type inference stands as a principled
and practical foundation for inference, ready to meet that challenge.
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