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Bounded Quantification

Mainstream OOP languages (Java, Scala, C#...) have polymorphic type
systems with subtyping and bounded quantification.

public static '<S extends Comparable> S min(S a, S b) {
if (a.compareTo(b) <= 8) {

return a;
} else { Bounded Quantification
return b; Gives subtyping bounds to type variables.

}
}

The type of min: V(S < Comparable) .S — S — S.

However, there is little work on type inference algorithms supporting
bounded quantification.



Type Inference

Type inference enables removing redundant type annotations.
List<String> numbers = Arrays.asList("1", "2", "3",6 "4" "B");
List<Integer> even = numbers.stream()
map|(f8! -> Integer.valueOf(s))
.filter(number -> number % 2 == B)
.collect(Collectors.tolList());
The type of map in Java is:
<R> Stream<R> map(Function<? super T,? extends R> mapper)
- Type argument inference: map is instantiated with type
R = Integer

- Argument inference: s has type String



Research on OOP Type Inference

Surprisingly little work devoted to practical OOP type inference:

- Most production compilers (Java/C#, etc) use algorithms loosely
based on:

E Benjamin C. Pierce, David N. Turner.
Local type inference. TOPLAS 2000.

- Scala 2 is based on an improved form of Local type inference:

- B Martin Odersky, Christoph Zenger, Matthias Zenger.
Colored local type inference. POPL 2001.

Local type inference suffers from some limitations. Next we will
identify these limitations in Scala 2*, and compare it with F%

*The implementation of Scala 2 contains some improvements. Scala 3 has more
improvements, but it has not been formally studied. Scala 2 type inference remains
more faithful to the original work of local type inference.



No support for interdependent bounds

Scala 2 provides some basic support but it fails frequently.

def idFun[A, B <: A = A](x: B): (A = A) = x
def idInt1: (Int = Int) = (x = x)

X In Scala 2, function idInt?2 fails to type-check:
def idInt2 = idFun(idInt1)

- Ais instantiated to L; B is instantiated to Int — Int
- X B < A= Aisnottrue: Int = Int <1 — L isnottrue.
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v In FbS interdependent bounds are supported:

let idFun: V(e < T). V(b <a—a). b= a— a=Aa. Ab. \z. g,
idInt: Int — Int = Az. z in idFun idInt



Hard-to-synthesize arguments

def map[A, B](f: A = B, xs: List[A]): List[B] = ...

X In Scala 2, function mapPlus1 fails to type-check:
def mapPlus1: List[Int] = map(x = 1 + x, List(1, 2, 3))

Local type inference requires the types of function arguments to be
synthesized first, but we can never synthesize the type of x => 1 + x.
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Hard-to-synthesize arguments

def map[A, B](f: A = B, xs: List[A]): List[B] = ...
X In Scala 2, function mapPlus1 fails to type-check:
def mapPlus1: List[Int] = map(x = 1 + x, List(1, 2, 3))

Local type inference requires the types of function arguments to be
synthesized first, but we can never synthesize the type of x => 1 + x.

v Workaround: Provide type annotations to the function argument.
def mapPlus2: List[Int] = map((x': Int) = 1 + x, List(1, 2, 3))

v F% can type-check the program without additional annotations:

let map:V(a < T).¥(b<T).(a—b) = [a] = [b] = ...
in map (Az. z+1) 1,2, 3]



No best argument

Sometimes invariant type variables cannot decide a unique
instantiation.

def snd[A]: (Int = A = A) = (x =y = y)
def id = snd(1)

X In Scala 2, the type of id is inferred as I — L. Thus id cannot be
applied further.

v In F’é unification is deferred. snd 1 can be applied further.
let snd:V(a <T).Int = (a = a) > a—a=Aa. Ax. \y.y 1in snd1



Higher-rank type inference

Take a polymorphic function as the argument of another function.

def k(f: Int = Int) =1
def g(f: ([A <: Int] = A = A) = Int) =1

X Scala 37, fails to type-check def f = g(k):

- k has type (Int — Int) — Int
- g accepts argument with type (V(a < Int). ¢ = a) — Int

- X (Int = Int) = Int < (V(a < Int). a — a) — Int is rejected
- due to its lack of implicit polymorphism.

./F% has better support for higher-rank polymorphism:
let k: (Int — Int) — Int = Af 1,
g (Y(a<Int).a—a)—Int) > Int=Af11in g k

TScala 2 does not support higher-rank types



Fbg Calculus

Pﬁ;extends_Fg calculus* with bounded quantification.

- avariant of kernel F<

- Global type inference (long-distance constraints)
- Implicit instantiation for monotypes (type argument inference)
- (Int = Int) > Int < (V(a < Int). a = a) —» Int
- Explicit type application for polytypes (impredicative
polymorphism)
s (Ao Az z:V(a<T)a—a)QVb<T).b—b)

Philosophy
- infer easy instantiations

- use explicit annotations for hard instantiations

+[ Jinxu Zhao, Bruno C. d. S. Oliveira. Elementary Type Inference. ECOOP 2022.



Type variables a,b

Types A B, C == 1la| Y(a< B). A
|A—B|T|L

Expressions et 3= z| ()| Az e| e ea|(e: A)
|e@A| A(a< B).e: A

Typing contexts A 20— Az Al Aja< A

Subtyping contexts 1\ 29 Al T,asS A

Compared with F¢, Fbg now incorporates bounds to support
bounded quantification.



Declarative Subtyping Rules

VHA<B A'is a subtype of B

—— <Unit — <T — <1
vE1<1 UVEALZT U1 <A
a< Bew asBeV UEB<A

— <Var <VarTrans
Uhta<a UhEa<A

UEB <A Uk A< DBy

UHE A — Ay < B — By

UE"r WETs<B Uk[r/a]ALC Cisnotthype<VL

UHVY(a<B).A<C -

UEB <B, VYEB<B VY,a<BFA <A,
U V(a<By). Ay <V(a < Bg). Ay

<—




Non-syntactic Monotype

With bounded quantification, if we treat all type variables as
monotypes, transitivity breaks due to rule <VarTrans.

vV VFA<LB:
b<V(c<1l).c—=1Fb<ST b<V(c<1l).c—=>1FbLD
b<V(c<1l)c—=1EY(a<T).a<b
v/ VW B<C(C:
b<V(c<:l).c—1Fb<V(c<:1).c— 1By <VarTrans
X WHE A< C:bounds are not equivalent
Ve<T).agV¥(e<:1).c—1

BY <VL
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Non-syntactic Monotype

With bounded quantification, if we treat all type variables as
monotypes, transitivity breaks due to rule <VarTrans.

vV VFA<LB:
b<V(c<1l).c—=1Fb<ST b<V(c<1l).c—=>1FbLD
b<V(c<1l)c—=1EY(a<T).a<b
v/ VW B<C(C:
b<V(c<:l).c—1Fb<V(c<:1).c— 1By <VarTrans
X WHE A< C:bounds are not equivalent
Ve<T).agV¥(e<:1).c—1

BY <VL

In F% only type variables with bound T or monotype bounds are
regarded as monotypes:
a<TeVU a<AeV UE™A

MTVar MTVarRec
U E™q U E™q
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Two Variants of F2: Complete Algorithm or Not?

In existing predicative HRP approaches, finding implicit
instantiations is greedy. They rely on the property:

TN < Ty = T] =To

Variant 1: sound, complete and decidable

Type variables with bound T are monotypes

Variant 2: sound but incomplete; type-checks more programs

Type variables with bound T or monotype bounds are monotypes

It breaks the property due to rule <VarTrans:
a<Intk a<Intbuta#Int



Contributions

- A declarative bidirectional type system

- Predicative implicit bounded quantification
- Impredicative explicit type applications
- Checking subsumption, type safety and completeness w.r.t. kernel F<

- A sound, complete and decidable algorithm of variant 1

- Worklist formulation®
- A sound algorithm of variant 2 with monotype subtyping
- Mechanical formalization and implementation

- All theorems are verified in Abella (LOC: 24,919)
- Haskell implementation

§@ Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. A Mechanical Formal-
ization of Higher-Ranked Polymorphic Type Inference. ICFP 2019.



Q&A

Implementation, proofs, and the extended version of the paper are
available at: https://doi.org/10.5281/zenodo.8202095




