e ERE R

B THE UNIVERSITY OF HONG KONG

Greedy Implicit Bounded Quantification

Chen Cui, Shengyi Jiang, Bruno C. d. S. Oliveira
October 26, 2023

The University of Hong Kong

Bounded Quantification

Mainstream OOP languages (Java, Scala, C#...) have polymorphic type
systems with subtyping and bounded quantification.

public static '<S extends Comparable> S min(S a, S b) {
if (a.compareTo(b) <= 8) {

return a;
} else { Bounded Quantification
return b; Gives subtyping bounds to type variables.

}
}

The type of min: V(S < Comparable) .S — S — S.

However, there is little work on type inference algorithms supporting
bounded quantification.

Type Inference

Type inference enables removing redundant type annotations.
List<String> numbers = Arrays.asList("1", "2", "3",6 "4" "B");
List<Integer> even = numbers.stream()
map|(f8! -> Integer.valueOf(s))
.filter(number -> number % 2 == B)
.collect(Collectors.tolList());
The type of map in Java is:
<R> Stream<R> map(Function<? super T,? extends R> mapper)
- Type argument inference: map is instantiated with type
R = Integer

- Argument inference: s has type String

Research on OOP Type Inference

Surprisingly little work devoted to practical OOP type inference:

- Most production compilers (Java/C#, etc) use algorithms loosely
based on:

E Benjamin C. Pierce, David N. Turner.
Local type inference. TOPLAS 2000.

- Scala 2 is based on an improved form of Local type inference:

- B Martin Odersky, Christoph Zenger, Matthias Zenger.
Colored local type inference. POPL 2001.

Local type inference suffers from some limitations. Next we will
identify these limitations in Scala 2*, and compare it with F%

*The implementation of Scala 2 contains some improvements. Scala 3 has more
improvements, but it has not been formally studied. Scala 2 type inference remains
more faithful to the original work of local type inference.

No support for interdependent bounds

Scala 2 provides some basic support but it fails frequently.

def idFun[A, B <: A = A](x: B): (A = A) = x
def idInt1: (Int = Int) = (x = x)

X In Scala 2, function idInt?2 fails to type-check:
def idInt2 = idFun(idInt1)

- Ais instantiated to L; B is instantiated to Int — Int
- X B < A= Aisnottrue: Int = Int <1 — L isnottrue.

No support for interdependent bounds

Scala 2 provides some basic support but it fails frequently.

def idFun[A, B <: A = A](x: B): (A = A) = x
def idInt1: (Int = Int) = (x = x)

X In Scala 2, function idInt?2 fails to type-check:
def idInt2 = idFun(idInt1)

- Ais instantiated to L; B is instantiated to Int — Int
- X B < A= Aisnottrue: Int = Int <1 — L isnottrue.

v In FbS interdependent bounds are supported:

let idFun: V(e < T). V(b <a—a). b= a— a=Aa. Ab. \z. g,
idInt: Int — Int = Az. z in idFun idInt

Hard-to-synthesize arguments

def map[A, B](f: A = B, xs: List[A]): List[B] = ...

X In Scala 2, function mapPlus1 fails to type-check:
def mapPlus1: List[Int] = map(x = 1 + x, List(1, 2, 3))

Local type inference requires the types of function arguments to be
synthesized first, but we can never synthesize the type of x => 1 + x.

Hard-to-synthesize arguments

def map[A, B](f: A = B, xs: List[A]): List[B] = ...
X In Scala 2, function mapPlus1 fails to type-check:
def mapPlus1: List[Int] = map(x = 1 + x, List(1, 2, 3))

Local type inference requires the types of function arguments to be
synthesized first, but we can never synthesize the type of x => 1 + x.

v Workaround: Provide type annotations to the function argument.
def mapPlus2: List[Int] = map((x': Int) = 1 + x, List(1, 2, 3))

Hard-to-synthesize arguments

def map[A, B](f: A = B, xs: List[A]): List[B] = ...
X In Scala 2, function mapPlus1 fails to type-check:
def mapPlus1: List[Int] = map(x = 1 + x, List(1, 2, 3))

Local type inference requires the types of function arguments to be
synthesized first, but we can never synthesize the type of x => 1 + x.

v Workaround: Provide type annotations to the function argument.
def mapPlus2: List[Int] = map((x': Int) = 1 + x, List(1, 2, 3))

v F% can type-check the program without additional annotations:

let map:V(a < T).¥(b<T).(a—b) = [a] = [b] = ...
in map (Az. z+1) 1,2, 3]

No best argument

Sometimes invariant type variables cannot decide a unique
instantiation.

def snd[A]: (Int = A = A) = (x =y = y)
def id = snd(1)

X In Scala 2, the type of id is inferred as I — L. Thus id cannot be
applied further.

v In F’é unification is deferred. snd 1 can be applied further.
let snd:V(a <T).Int = (a = a) > a—a=Aa. Ax. \y.y 1in snd1

Higher-rank type inference

Take a polymorphic function as the argument of another function.

def k(f: Int = Int) =1
def g(f: ([A <: Int] = A = A) = Int) =1

X Scala 37, fails to type-check def f = g(k):

- k has type (Int — Int) — Int
- g accepts argument with type (V(a < Int). ¢ = a) — Int

- X (Int = Int) = Int < (V(a < Int). a — a) — Int is rejected
- due to its lack of implicit polymorphism.

./F% has better support for higher-rank polymorphism:
let k: (Int — Int) — Int = Af 1,
g (Y(a<Int).a—a)—Int) > Int=Af11in g k

TScala 2 does not support higher-rank types

Fbg Calculus

Pﬁ;extends_Fg calculus* with bounded quantification.

- avariant of kernel F<

- Global type inference (long-distance constraints)
- Implicit instantiation for monotypes (type argument inference)
- (Int = Int) > Int < (V(a < Int). a = a) —» Int
- Explicit type application for polytypes (impredicative
polymorphism)
s (Ao Az z:V(a<T)a—a)QVb<T).b—b)

Philosophy
- infer easy instantiations

- use explicit annotations for hard instantiations

+[Jinxu Zhao, Bruno C. d. S. Oliveira. Elementary Type Inference. ECOOP 2022.

Type variables a,b

Types A B, C == 1la| Y(a< B). A
|A—B|T|L

Expressions et 3= z| ()| Az e| e ea|(e: A)
|e@A| A(a< B).e: A

Typing contexts A 20— Az Al Aja< A

Subtyping contexts 1\ 29 Al T,asS A

Compared with F¢, Fbg now incorporates bounds to support
bounded quantification.

Declarative Subtyping Rules

VHA<B A'is a subtype of B

—— <Unit — <T — <1
vE1<1 UVEALZT U1 <A
a< Bew asBeV UEB<A

— <Var <VarTrans
Uhta<a UhEa<A

UEB <A Uk A< DBy

UHE A — Ay < B — By

UE"r WETs<B Uk[r/a]ALC Cisnotthype<VL

UHVY(a<B).A<C -

UEB <B, VYEB<B VY,a<BFA <A,
U V(a<By). Ay <V(a < Bg). Ay

<—

Non-syntactic Monotype

With bounded quantification, if we treat all type variables as
monotypes, transitivity breaks due to rule <VarTrans.

vV VFA<LB:
b<V(c<1l).c—=1Fb<ST b<V(c<1l).c—=>1FbLD
b<V(c<1l)c—=1EY(a<T).a<b
v/ VW B<C(C:
b<V(c<:l).c—1Fb<V(c<:1).c— 1By <VarTrans
X WHE A< C:bounds are not equivalent
Ve<T).agV¥(e<:1).c—1

BY <VL

1

Non-syntactic Monotype

With bounded quantification, if we treat all type variables as
monotypes, transitivity breaks due to rule <VarTrans.

vV VFA<LB:
b<V(c<1l).c—=1Fb<ST b<V(c<1l).c—=>1FbLD
b<V(c<1l)c—=1EY(a<T).a<b
v/ VW B<C(C:
b<V(c<:l).c—1Fb<V(c<:1).c— 1By <VarTrans
X WHE A< C:bounds are not equivalent
Ve<T).agV¥(e<:1).c—1

BY <VL

In F% only type variables with bound T or monotype bounds are
regarded as monotypes:
a<TeVU a<AeV UE™A

MTVar MTVarRec
U E™q U E™q

1

Two Variants of F2: Complete Algorithm or Not?

In existing predicative HRP approaches, finding implicit
instantiations is greedy. They rely on the property:

TN < Ty = T] =To

Variant 1: sound, complete and decidable

Type variables with bound T are monotypes

Variant 2: sound but incomplete; type-checks more programs

Type variables with bound T or monotype bounds are monotypes

It breaks the property due to rule <VarTrans:
a<Intk a<Intbuta#Int

Contributions

- A declarative bidirectional type system

- Predicative implicit bounded quantification
- Impredicative explicit type applications
- Checking subsumption, type safety and completeness w.r.t. kernel F<

- A sound, complete and decidable algorithm of variant 1

- Worklist formulation®
- A sound algorithm of variant 2 with monotype subtyping
- Mechanical formalization and implementation

- All theorems are verified in Abella (LOC: 24,919)
- Haskell implementation

§@ Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. A Mechanical Formal-
ization of Higher-Ranked Polymorphic Type Inference. ICFP 2019.

Q&A

Implementation, proofs, and the extended version of the paper are
available at: https://doi.org/10.5281/zenodo.8202095

