
Greedy Implicit Bounded Quantification

Chen Cui, Shengyi Jiang, Bruno C. d. S. Oliveira
October 26, 2023

The University of Hong Kong

Bounded Quantification

Mainstream OOP languages (Java, Scala, C#...) have polymorphic type
systems with subtyping and bounded quantification.

public static <S extends Comparable> S min(S a, S b) {
if (a.compareTo(b) <= 0) {

return a;
} else {

return b;
}

}
The type of min: ∀(S ≤ Comparable) . S → S → S.
However, there is little work on type inference algorithms supporting
bounded quantification.

Bounded Quantification
Gives subtyping bounds to type variables.

1

Type Inference

Type inference enables removing redundant type annotations.

List<String> numbers = Arrays.asList("1", "2", "3", "4", "5");
List<Integer> even = numbers.stream()

. map (s -> Integer.valueOf(s))

.filter(number -> number % 2 == 0)

.collect(Collectors.toList());
The type of map in Java is:

<R> Stream<R> map(Function<? super T,? extends R> mapper)
• Type argument inference: map is instantiated with type
R = Integer

• Argument inference: s has type String

2

Research on OOP Type Inference

Surprisingly little work devoted to practical OOP type inference:

• Most production compilers (Java/C#, etc) use algorithms loosely
based on:

• Benjamin C. Pierce, David N. Turner.
Local type inference. TOPLAS 2000.

• Scala 2 is based on an improved form of Local type inference:
• Martin Odersky, Christoph Zenger, Matthias Zenger.

Colored local type inference. POPL 2001.

Local type inference suffers from some limitations. Next we will
identify these limitations in Scala 2*, and compare it with Fb

≤.

*The implementation of Scala 2 contains some improvements. Scala 3 has more
improvements, but it has not been formally studied. Scala 2 type inference remains
more faithful to the original work of local type inference.

3

No support for interdependent bounds

Scala 2 provides some basic support but it fails frequently.

def idFun[A, B <⡃ A ⴙⷶ A](x: B): (A ⴙⷶ A) = x
def idInt1: (Int ⴙⷶ Int) = (x ⴙⷶ x)
7 In Scala 2, function idInt2 fails to type-check:
def idInt2 = idFun(idInt1)
• A is instantiated to ⊥; B is instantiated to Int → Int
• 7 B <⡃ A ⴙⷶ A is not true: Int → Int ≤ ⊥ → ⊥ is not true.

3 In Fb
≤, interdependent bounds are supported:

let idFun: ∀(a ≤ ⊤). ∀(b ≤ a → a). b → a → a = Λa. Λb. λx. x,
idInt: Int → Int = λx. x in idFun idInt

4

No support for interdependent bounds

Scala 2 provides some basic support but it fails frequently.

def idFun[A, B <⡃ A ⴙⷶ A](x: B): (A ⴙⷶ A) = x
def idInt1: (Int ⴙⷶ Int) = (x ⴙⷶ x)
7 In Scala 2, function idInt2 fails to type-check:
def idInt2 = idFun(idInt1)
• A is instantiated to ⊥; B is instantiated to Int → Int
• 7 B <⡃ A ⴙⷶ A is not true: Int → Int ≤ ⊥ → ⊥ is not true.

3 In Fb
≤, interdependent bounds are supported:

let idFun: ∀(a ≤ ⊤). ∀(b ≤ a → a). b → a → a = Λa. Λb. λx. x,
idInt: Int → Int = λx. x in idFun idInt

4

Hard-to-synthesize arguments

def map[A, B](f: A ⴙⷶ B, xs: List[A]): List[B] = ⪺⬂⭊
7 In Scala 2, function mapPlus1 fails to type-check:
def mapPlus1: List[Int] = map(x ⴙⷶ 1 + x, List(1, 2, 3))
Local type inference requires the types of function arguments to be
synthesized first, but we can never synthesize the type of x ⴙⷶ 1 + x.

3 Workaround: Provide type annotations to the function argument.
def mapPlus2: List[Int] = map((x : Int) ⴙⷶ 1 + x, List(1, 2, 3))
3 Fb

≤ can type-check the program without additional annotations:

let map: ∀(a ≤ ⊤). ∀(b ≤ ⊤). (a → b) → [a] → [b] = ⪺⬂⭊
in map (λx. x + 1) [1, 2, 3]

5

Hard-to-synthesize arguments

def map[A, B](f: A ⴙⷶ B, xs: List[A]): List[B] = ⪺⬂⭊
7 In Scala 2, function mapPlus1 fails to type-check:
def mapPlus1: List[Int] = map(x ⴙⷶ 1 + x, List(1, 2, 3))
Local type inference requires the types of function arguments to be
synthesized first, but we can never synthesize the type of x ⴙⷶ 1 + x.
3 Workaround: Provide type annotations to the function argument.
def mapPlus2: List[Int] = map((x : Int) ⴙⷶ 1 + x, List(1, 2, 3))

3 Fb
≤ can type-check the program without additional annotations:

let map: ∀(a ≤ ⊤). ∀(b ≤ ⊤). (a → b) → [a] → [b] = ⪺⬂⭊
in map (λx. x + 1) [1, 2, 3]

5

Hard-to-synthesize arguments

def map[A, B](f: A ⴙⷶ B, xs: List[A]): List[B] = ⪺⬂⭊
7 In Scala 2, function mapPlus1 fails to type-check:
def mapPlus1: List[Int] = map(x ⴙⷶ 1 + x, List(1, 2, 3))
Local type inference requires the types of function arguments to be
synthesized first, but we can never synthesize the type of x ⴙⷶ 1 + x.
3 Workaround: Provide type annotations to the function argument.
def mapPlus2: List[Int] = map((x : Int) ⴙⷶ 1 + x, List(1, 2, 3))
3 Fb

≤ can type-check the program without additional annotations:

let map: ∀(a ≤ ⊤). ∀(b ≤ ⊤). (a → b) → [a] → [b] = ⪺⬂⭊
in map (λx. x + 1) [1, 2, 3]

5

No best argument

Sometimes invariant type variables cannot decide a unique
instantiation.

def snd[A]: (Int ⴙⷶ A ⴙⷶ A) = (x ⴙⷶ y ⴙⷶ y)
def id = snd(1)
7 In Scala 2, the type of id is inferred as ⊥ → ⊥. Thus id cannot be
applied further.

3 In Fb
≤, unification is deferred. snd 1 can be applied further.

let snd: ∀(a ≤ ⊤). Int → (a → a) → a → a = Λa. λx. λy. y in snd 1

6

Higher-rank type inference

Take a polymorphic function as the argument of another function.

def k(f: Int ⴙⷶ Int) = 1
def g(f: ([A <⡃ Int] ⴙⷶ A ⴙⷶ A) ⴙⷶ Int) = 1
7 Scala 3†, fails to type-check def f = g(k):
• k has type (Int → Int) → Int
• g accepts argument with type (∀(a ≤ Int). a → a) → Int
• 7 (Int → Int) → Int ≤ (∀(a ≤ Int). a → a) → Int is rejected

• due to its lack of implicit polymorphism.

3Fb
≤ has better support for higher-rank polymorphism:

let k: (Int → Int) → Int = λf. 1,
g: ((∀(a ≤ Int). a → a) → Int) → Int = λf. 1 in g k

†Scala 2 does not support higher-rank types

7

Fb
≤ Calculus

Fb
≤ extends Fe

≤ calculus‡ with bounded quantification.

• a variant of kernel F≤

• Global type inference (long-distance constraints)
• Implicit instantiation for monotypes (type argument inference)

• (Int → Int) → Int ≤ (∀(a ≤ Int). a → a) → Int
• Explicit type application for polytypes (impredicative
polymorphism)

• (Λa. λx. x : ∀(a ≤ ⊤). a → a) @(∀(b ≤ ⊤). b → b)

Philosophy
• infer easy instantiations
• use explicit annotations for hard instantiations

‡ Jinxu Zhao, Bruno C. d. S. Oliveira. Elementary Type Inference. ECOOP 2022.

8

Syntax

Type variables a, b
Types A,B,C ::= 1 | a | ∀(a ≤ B). A

| A → B | ⊤ | ⊥
Expressions e, t ::= x | () | λx. e | e1 e2 | (e : A)

| e @A | Λ(a ≤ B). e : A
Typing contexts ∆ ::= · | ∆, x : A | ∆, a ≤ A
Subtyping contexts Ψ ::= ∆ | Ψ, a ≲ A

Compared with Fe
≤, Fb

≤ now incorporates bounds to support
bounded quantification.

9

Declarative Subtyping Rules

Ψ ⊢ A ≤ B A is a subtype of B

Ψ ⊢ 1 ≤ 1
≤Unit

Ψ ⊢ A ≤ ⊤
≤⊤

Ψ ⊢ ⊥ ≤ A
≤⊥

a <≃ B ∈ Ψ

Ψ ⊢ a ≤ a
≤Var

a <≃ B ∈ Ψ Ψ ⊢ B ≤ A
Ψ ⊢ a ≤ A

≤VarTrans

Ψ ⊢ B1 ≤ A1 Ψ ⊢ A2 ≤ B2

Ψ ⊢ A1 → A2 ≤ B1 → B2
≤→

Ψ ⊢m τ Ψ ⊢ τ ≤ B Ψ ⊢ [τ/a]A ≤ C C is not a ∀ type
Ψ ⊢ ∀(a ≤ B). A ≤ C

≤∀L

Ψ ⊢ B1 ≤ B2 Ψ ⊢ B2 ≤ B1 Ψ, a ≲ B2 ⊢ A1 ≤ A2

Ψ ⊢ ∀(a ≤ B1). A1 ≤ ∀(a ≤ B2). A2
≤∀

10

Non-syntactic Monotype

With bounded quantification, if we treat all type variables as
monotypes, transitivity breaks due to rule ≤VarTrans.

3 Ψ ⊢ A ≤ B :
b ≤ ∀(c ≤ 1). c → 1 ⊢ b ≤ ⊤ b ≤ ∀(c ≤ 1). c → 1 ⊢ b ≤ b

b ≤ ∀(c ≤ 1). c → 1 ⊢ ∀(a ≤ ⊤). a ≤ b
BY ≤∀L

3 Ψ ⊢ B ≤ C :
b ≤ ∀(c <: 1). c → 1 ⊢ b ≤ ∀(c <: 1). c → 1 BY ≤VarTrans

7 Ψ ⊢ A ̸≤ C : bounds are not equivalent
∀(a ≤ ⊤). a ̸≤ ∀(c <: 1). c → 1

In Fb
≤, only type variables with bound ⊤ or monotype bounds are

regarded as monotypes:

a ≤ ⊤ ∈ Ψ

Ψ ⊢m a
MTVar

a ≤ A ∈ Ψ Ψ ⊢m A
Ψ ⊢m a

MTVarRec

11

Non-syntactic Monotype

With bounded quantification, if we treat all type variables as
monotypes, transitivity breaks due to rule ≤VarTrans.

3 Ψ ⊢ A ≤ B :
b ≤ ∀(c ≤ 1). c → 1 ⊢ b ≤ ⊤ b ≤ ∀(c ≤ 1). c → 1 ⊢ b ≤ b

b ≤ ∀(c ≤ 1). c → 1 ⊢ ∀(a ≤ ⊤). a ≤ b
BY ≤∀L

3 Ψ ⊢ B ≤ C :
b ≤ ∀(c <: 1). c → 1 ⊢ b ≤ ∀(c <: 1). c → 1 BY ≤VarTrans

7 Ψ ⊢ A ̸≤ C : bounds are not equivalent
∀(a ≤ ⊤). a ̸≤ ∀(c <: 1). c → 1

In Fb
≤, only type variables with bound ⊤ or monotype bounds are

regarded as monotypes:

a ≤ ⊤ ∈ Ψ

Ψ ⊢m a
MTVar

a ≤ A ∈ Ψ Ψ ⊢m A
Ψ ⊢m a

MTVarRec

11

Two Variants of Fb
≤: Complete Algorithm or Not?

In existing predicative HRP approaches, finding implicit
instantiations is greedy. They rely on the property:

τ1 ≤ τ2 =⇒ τ1 = τ2

Variant 1: sound, complete and decidable

Type variables with bound ⊤ are monotypes

Variant 2: sound but incomplete; type-checks more programs

Type variables with bound ⊤ or monotype bounds are monotypes
It breaks the property due to rule ≤VarTrans:

a ≤ Int ⊢ a ≤ Int but a ̸= Int

12

Contributions

• A declarative bidirectional type system
• Predicative implicit bounded quantification
• Impredicative explicit type applications
• Checking subsumption, type safety and completeness w.r.t. kernel F≤

• A sound, complete and decidable algorithm of variant 1
• Worklist formulation§

• A sound algorithm of variant 2 with monotype subtyping
• Mechanical formalization and implementation

• All theorems are verified in Abella (LOC: 24,919)
• Haskell implementation

§ Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. A Mechanical Formal-
ization of Higher-Ranked Polymorphic Type Inference. ICFP 2019.

13

Q&A

Implementation, proofs, and the extended version of the paper are
available at: https://doi.org/10.5281/zenodo.8202095

13

